A340592 a(n) is the concatenation of the prime factors (with multiplicity) of n mod n.
0, 0, 2, 0, 5, 0, 6, 6, 5, 0, 7, 0, 13, 5, 14, 0, 17, 0, 5, 16, 13, 0, 15, 5, 5, 9, 3, 0, 25, 0, 14, 14, 13, 22, 1, 0, 29, 1, 25, 0, 27, 0, 11, 20, 39, 0, 47, 28, 5, 11, 29, 0, 11, 16, 43, 34, 55, 0, 15, 0, 45, 22, 14, 58, 1, 0, 41, 47, 47, 0, 57, 0, 15, 55, 15, 18, 51, 0, 65, 12, 77, 0, 53, 7
Offset: 2
Examples
For n = 20 = 2*2*5, a(20) = 225 mod 20 = 5.
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
dcat:= proc(L) local i,x; x:= L[-1]; for i from nops(L)-1 to 1 by -1 do x:= 10^(1+ilog10(x))*L[i]+x od; x end proc: f:= proc(n) local F; F:= sort(ifactors(n)[2],(a,b) -> a[1] < b[1]); dcat(map(t -> t[1]$t[2], F)) mod n; end proc: map(f, [$2..100]);
-
Mathematica
Table[Mod[FromDigits[Flatten[IntegerDigits/@Table[#[[1]],#[[2]]]&/@FactorInteger[n]]],n],{n,2,100}] (* Harvey P. Dale, Jul 17 2023 *)
-
Python
from sympy import factorint def a(n): if n == 1: return 0 return int("".join(str(f) for f in factorint(n, multiple=True)))%n print([a(n) for n in range(2, 86)]) # Michael S. Branicky, Jan 18 2022
Formula
a(n) = A037276(n) mod n.
Comments