cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340596 Number of co-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 8
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be co-balanced if it has exactly A001221(n) factors.

Examples

			The a(n) co-balanced factorizations for n = 12, 24, 36, 72, 120, 144, 180:
  2*6    3*8     4*9     8*9     3*5*8     2*72     4*5*9
  3*4    4*6     6*6     2*36    4*5*6     3*48     5*6*6
         2*12    2*18    3*24    2*2*30    4*36     2*2*45
                 3*12    4*18    2*3*20    6*24     2*3*30
                         6*12    2*4*15    8*18     2*5*18
                                 2*5*12    9*16     2*6*15
                                 2*6*10    12*12    2*9*10
                                 3*4*10             3*3*20
                                                    3*4*15
                                                    3*5*12
                                                    3*6*10
		

Crossrefs

Positions of terms > 1 are A126706.
Positions of 1's are A303554.
The version for unlabeled multiset partitions is A319616.
The alt-balanced version is A340599.
The balanced version is A340653.
The cross-balanced version is A340654.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340600 counts unlabeled balanced multiset partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[#]==PrimeNu[n]&]],{n,100}]
  • PARI
    A340596(n, m=n, om=omega(n)) = if(1==n,(0==om), sumdiv(n, d, if((d>1)&&(d<=m), A340596(n/d, d, om-1)))); \\ Antti Karttunen, Jun 10 2024

Extensions

Data section extended up to a(120) by Antti Karttunen, Jun 10 2024