A340596 Number of co-balanced factorizations of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 8
Offset: 1
Keywords
Examples
The a(n) co-balanced factorizations for n = 12, 24, 36, 72, 120, 144, 180: 2*6 3*8 4*9 8*9 3*5*8 2*72 4*5*9 3*4 4*6 6*6 2*36 4*5*6 3*48 5*6*6 2*12 2*18 3*24 2*2*30 4*36 2*2*45 3*12 4*18 2*3*20 6*24 2*3*30 6*12 2*4*15 8*18 2*5*18 2*5*12 9*16 2*6*15 2*6*10 12*12 2*9*10 3*4*10 3*3*20 3*4*15 3*5*12 3*6*10
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Positions of terms > 1 are A126706.
Positions of 1's are A303554.
The version for unlabeled multiset partitions is A319616.
The alt-balanced version is A340599.
The balanced version is A340653.
The cross-balanced version is A340654.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340600 counts unlabeled balanced multiset partitions.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],Length[#]==PrimeNu[n]&]],{n,100}]
-
PARI
A340596(n, m=n, om=omega(n)) = if(1==n,(0==om), sumdiv(n, d, if((d>1)&&(d<=m), A340596(n/d, d, om-1)))); \\ Antti Karttunen, Jun 10 2024
Extensions
Data section extended up to a(120) by Antti Karttunen, Jun 10 2024
Comments