A340604 Heinz numbers of integer partitions of odd positive rank.
3, 7, 10, 13, 15, 19, 22, 25, 28, 29, 33, 34, 37, 42, 43, 46, 51, 52, 53, 55, 61, 62, 63, 69, 70, 71, 76, 77, 78, 79, 82, 85, 88, 89, 93, 94, 98, 101, 105, 107, 113, 114, 115, 116, 117, 118, 119, 121, 123, 130, 131, 132, 134, 136, 139, 141, 146, 147, 148, 151
Offset: 1
Keywords
Examples
The sequence of partitions with their Heinz numbers begins: 3: (2) 46: (9,1) 82: (13,1) 7: (4) 51: (7,2) 85: (7,3) 10: (3,1) 52: (6,1,1) 88: (5,1,1,1) 13: (6) 53: (16) 89: (24) 15: (3,2) 55: (5,3) 93: (11,2) 19: (8) 61: (18) 94: (15,1) 22: (5,1) 62: (11,1) 98: (4,4,1) 25: (3,3) 63: (4,2,2) 101: (26) 28: (4,1,1) 69: (9,2) 105: (4,3,2) 29: (10) 70: (4,3,1) 107: (28) 33: (5,2) 71: (20) 113: (30) 34: (7,1) 76: (8,1,1) 114: (8,2,1) 37: (12) 77: (5,4) 115: (9,3) 42: (4,2,1) 78: (6,2,1) 116: (10,1,1) 43: (14) 79: (22) 117: (6,2,2)
Links
- FindStat, St000145: The Dyson rank of a partition
Crossrefs
Note: Heinz numbers are given in parentheses below.
These partitions are counted by A101707.
A001222 gives number of prime indices.
A061395 gives maximum prime index.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
A340653 counts balanced factorizations.
- Odd -
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.
Programs
-
Mathematica
rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n]; Select[Range[100],OddQ[rk[#]]&&rk[#]>0&]
Comments