A340605 Heinz numbers of integer partitions of even positive rank.
5, 11, 14, 17, 21, 23, 26, 31, 35, 38, 39, 41, 44, 47, 49, 57, 58, 59, 65, 66, 67, 68, 73, 74, 83, 86, 87, 91, 92, 95, 97, 99, 102, 103, 104, 106, 109, 110, 111, 122, 124, 127, 129, 133, 137, 138, 142, 143, 145, 149, 152, 153, 154, 156, 157, 158, 159, 164, 165
Offset: 1
Keywords
Examples
The sequence of partitions with their Heinz numbers begins: 5: (3) 57: (8,2) 97: (25) 11: (5) 58: (10,1) 99: (5,2,2) 14: (4,1) 59: (17) 102: (7,2,1) 17: (7) 65: (6,3) 103: (27) 21: (4,2) 66: (5,2,1) 104: (6,1,1,1) 23: (9) 67: (19) 106: (16,1) 26: (6,1) 68: (7,1,1) 109: (29) 31: (11) 73: (21) 110: (5,3,1) 35: (4,3) 74: (12,1) 111: (12,2) 38: (8,1) 83: (23) 122: (18,1) 39: (6,2) 86: (14,1) 124: (11,1,1) 41: (13) 87: (10,2) 127: (31) 44: (5,1,1) 91: (6,4) 129: (14,2) 47: (15) 92: (9,1,1) 133: (8,4) 49: (4,4) 95: (8,3) 137: (33)
Links
- FindStat, St000145: The Dyson rank of a partition
Crossrefs
Note: Heinz numbers are given in parentheses below.
These partitions are counted by A101708.
A001222 counts prime indices.
A061395 gives maximum prime index.
A072233 counts partitions by sum and length.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
- Even -
A339846 counts factorizations of even length.
Programs
-
Mathematica
rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n]; Select[Range[100],EvenQ[rk[#]]&&rk[#]>0&]
Comments