A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).
2, 3, 5, 6, 7, 9, 11, 13, 14, 17, 19, 20, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 52, 53, 56, 57, 58, 59, 61, 65, 67, 71, 73, 74, 75, 78, 79, 83, 84, 86, 87, 89, 91, 92, 95, 97, 101, 103, 106, 107, 109, 111, 113, 117, 122, 125, 126, 127
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 29: {10} 56: {1,1,1,4} 3: {2} 30: {1,2,3} 57: {2,8} 5: {3} 31: {11} 58: {1,10} 6: {1,2} 35: {3,4} 59: {17} 7: {4} 37: {12} 61: {18} 9: {2,2} 38: {1,8} 65: {3,6} 11: {5} 39: {2,6} 67: {19} 13: {6} 41: {13} 71: {20} 14: {1,4} 43: {14} 73: {21} 17: {7} 45: {2,2,3} 74: {1,12} 19: {8} 47: {15} 75: {2,3,3} 20: {1,1,3} 49: {4,4} 78: {1,2,6} 21: {2,4} 50: {1,3,3} 79: {22} 23: {9} 52: {1,1,6} 83: {23} 26: {1,6} 53: {16} 84: {1,1,2,4}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Note: Heinz numbers are given in parentheses below.
The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853.
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340609.
A001222 counts prime factors.
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A112798 lists the prime indices of each positive integer.
Programs
-
Maple
filter:= proc(n) local F,m,g,t; F:= ifactors(n)[2]; m:= add(t[2],t=F); g:= numtheory:-pi(max(seq(t[1],t=F))); g mod m = 0; end proc: select(filter, [$2..1000]); # Robert Israel, Feb 08 2021
-
Mathematica
Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]
Comments