A340611 Number of integer partitions of n of length 2^k where k is the greatest part.
1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 29, 32, 34, 36, 38, 41, 42, 45, 47, 50, 52, 56, 58, 63, 66, 71, 75, 83, 88, 98, 106, 118, 128, 143, 155, 173, 188, 208, 226, 250, 270, 297, 321, 350
Offset: 0
Keywords
Examples
The partitions for n = 12, 14, 16, 22, 24: 32211111 32222111 32222221 33333322 33333333 33111111 33221111 33222211 33333331 4222221111111111 33311111 33322111 4222111111111111 4322211111111111 33331111 4321111111111111 4332111111111111 4411111111111111 4422111111111111 4431111111111111 The conjugate partitions: (8,2,2) (8,3,3) (8,4,4) (8,7,7) (8,8,8) (8,3,1) (8,4,2) (8,5,3) (8,8,6) (16,3,3,2) (8,5,1) (8,6,2) (16,2,2,2) (16,4,2,2) (8,7,1) (16,3,2,1) (16,4,3,1) (16,4,1,1) (16,5,2,1) (16,6,1,1)
Crossrefs
Note: A-numbers of Heinz-number sequences are in parentheses below.
A072233 counts partitions by sum and length.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.
A340689 have a factorization of length 2^max.
A340690 have a factorization of maximum 2^length.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[#]==2^Max@@#&]],{n,0,30}]
Comments