cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340634 Numbers k such that k + A037276(k) is prime.

Original entry on oeis.org

1, 6, 14, 18, 22, 26, 34, 36, 38, 46, 48, 62, 66, 74, 106, 108, 110, 122, 134, 146, 156, 166, 170, 174, 178, 194, 196, 198, 206, 226, 230, 254, 262, 274, 278, 290, 294, 298, 306, 318, 354, 362, 374, 386, 392, 394, 416, 420, 422, 426, 458, 466, 468, 490, 502, 504, 516, 526, 528, 530, 532, 544, 562
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 14 2021

Keywords

Comments

All terms except 1 are even.

Examples

			a(3) = 14 is a term because 14 + A037276(14) = 14 + 27 = 41 is prime.
		

Crossrefs

Programs

  • Maple
    dcat:= proc(L) local i, x;
      x:= L[-1];
      for i from nops(L)-1 to 1 by -1 do
        x:= 10^(1+ilog10(x))*L[i]+x
      od;
      x
    end proc:
    A037276:= proc(n) local F;
      F:= sort(ifactors(n)[2], (a, b) -> a[1] < b[1]);
      dcat(map(t -> t[1]$t[2], F));
    end proc:
    A037276(1):= 1:
    select(t -> isprime(t + A037276(t)), [1,seq(i,i=3..1000)]);

A340636 Primes of the form k + A037276(k) in more than one way.

Original entry on oeis.org

251, 2671, 2687, 2753, 23327, 23561, 27827, 28499, 28789, 28817, 29411, 34757, 223441, 226001, 227537, 230849, 231359, 232217, 232259, 232367, 232643, 232919, 233591, 234791, 236129, 236609, 236867, 237857, 238141, 239023, 239873, 240899, 241169, 241343, 241687, 241691, 242447, 242747, 245299
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 14 2021

Keywords

Examples

			a(3) = 2687 = 170 + A037276(170) = 170 + 2517
            = 458 + A037276(458) = 458 + 2229.
The first term that occurs in more than two ways is
a(163) = 2255299 =  4180 + A037276(4180)  =  4180 + 2251119
                 = 21156 + A037276(21156) = 21156 + 2234143
                 = 29560 + A037276(29560) = 29560 + 2225739.
		

Crossrefs

Programs

  • Maple
    N:= 5*10^5: # for terms <= N
    dcat:= proc(L) local i, x;
      x:= L[-1];
      for i from nops(L)-1 to 1 by -1 do
        x:= 10^(1+ilog10(x))*L[i]+x
      od;
      x
    end proc:
    A037276:= proc(n) local F;
      F:= sort(ifactors(n)[2], (a, b) -> a[1] < b[1]);
      dcat(map(t -> t[1]$t[2], F));
    end proc:
    A037276(1):= 1:
    R:= NULL:
    for n from 1 to N/2 do
      v:= n + A037276(n);
      if v < N and isprime(v) then R:= R, v fi;
    od:
    S:= {R}:
    select(s -> numboccur(s,[R])>1, S);
Showing 1-2 of 2 results.