A340633 Primes of the form k + A037276(k).
2, 29, 41, 233, 239, 251, 257, 269, 293, 311, 359, 383, 401, 419, 449, 467, 491, 2269, 2309, 2339, 2377, 2381, 2393, 2411, 2417, 2447, 2473, 2503, 2543, 2579, 2591, 2621, 2633, 2671, 2687, 2699, 2713, 2753, 2789, 2797, 2819, 2843, 2879, 2939, 3011, 3041, 3067, 3083, 3119, 3137, 3167, 3191, 3203
Offset: 1
Examples
a(1) = 2 = 1 + A037276(1) = 1 + 1; a(2) = 29 = 6 + A037276(6) = 6 + 23; a(3) = 41 = 14 + A037276(14) = 14 + 27; a(4) = 233 = 22 + A037276(22) = 22 + 211; a(5) = 251 = 18 + A037276(18) = 18 + 233 = 34 + A037276(34) = 34 + 217.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 5000: # for terms <= N dcat:= proc(L) local i, x; x:= L[-1]; for i from nops(L)-1 to 1 by -1 do x:= 10^(1+ilog10(x))*L[i]+x od; x end proc: A037276:= proc(n) local F; F:= sort(ifactors(n)[2], (a, b) -> a[1] < b[1]); dcat(map(t -> t[1]$t[2], F)); end proc: A037276(1):= 1: R:= NULL: for n from 1 to N/2 do v:= n + A037276(n); if v < N and isprime(v) then R:= R, v fi; od: sort(convert({R},list));
Comments