cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340633 Primes of the form k + A037276(k).

Original entry on oeis.org

2, 29, 41, 233, 239, 251, 257, 269, 293, 311, 359, 383, 401, 419, 449, 467, 491, 2269, 2309, 2339, 2377, 2381, 2393, 2411, 2417, 2447, 2473, 2503, 2543, 2579, 2591, 2621, 2633, 2671, 2687, 2699, 2713, 2753, 2789, 2797, 2819, 2843, 2879, 2939, 3011, 3041, 3067, 3083, 3119, 3137, 3167, 3191, 3203
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 13 2021

Keywords

Comments

All terms have first digit 2, 3 or 4.

Examples

			a(1) =   2 =  1 + A037276(1)  =  1 +   1;
a(2) =  29 =  6 + A037276(6)  =  6 +  23;
a(3) =  41 = 14 + A037276(14) = 14 +  27;
a(4) = 233 = 22 + A037276(22) = 22 + 211;
a(5) = 251 = 18 + A037276(18) = 18 + 233
           = 34 + A037276(34) = 34 + 217.
		

Crossrefs

Programs

  • Maple
    N:= 5000: # for terms <= N
    dcat:= proc(L) local i, x;
      x:= L[-1];
      for i from nops(L)-1 to 1 by -1 do
        x:= 10^(1+ilog10(x))*L[i]+x
      od;
      x
    end proc:
    A037276:= proc(n) local F;
      F:= sort(ifactors(n)[2], (a, b) -> a[1] < b[1]);
      dcat(map(t -> t[1]$t[2], F));
    end proc:
    A037276(1):= 1:
    R:= NULL:
    for n from 1 to N/2 do
      v:= n + A037276(n);
      if v < N and isprime(v) then R:= R, v fi;
    od:
    sort(convert({R},list));

A340636 Primes of the form k + A037276(k) in more than one way.

Original entry on oeis.org

251, 2671, 2687, 2753, 23327, 23561, 27827, 28499, 28789, 28817, 29411, 34757, 223441, 226001, 227537, 230849, 231359, 232217, 232259, 232367, 232643, 232919, 233591, 234791, 236129, 236609, 236867, 237857, 238141, 239023, 239873, 240899, 241169, 241343, 241687, 241691, 242447, 242747, 245299
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 14 2021

Keywords

Examples

			a(3) = 2687 = 170 + A037276(170) = 170 + 2517
            = 458 + A037276(458) = 458 + 2229.
The first term that occurs in more than two ways is
a(163) = 2255299 =  4180 + A037276(4180)  =  4180 + 2251119
                 = 21156 + A037276(21156) = 21156 + 2234143
                 = 29560 + A037276(29560) = 29560 + 2225739.
		

Crossrefs

Programs

  • Maple
    N:= 5*10^5: # for terms <= N
    dcat:= proc(L) local i, x;
      x:= L[-1];
      for i from nops(L)-1 to 1 by -1 do
        x:= 10^(1+ilog10(x))*L[i]+x
      od;
      x
    end proc:
    A037276:= proc(n) local F;
      F:= sort(ifactors(n)[2], (a, b) -> a[1] < b[1]);
      dcat(map(t -> t[1]$t[2], F));
    end proc:
    A037276(1):= 1:
    R:= NULL:
    for n from 1 to N/2 do
      v:= n + A037276(n);
      if v < N and isprime(v) then R:= R, v fi;
    od:
    S:= {R}:
    select(s -> numboccur(s,[R])>1, S);
Showing 1-2 of 2 results.