A340654 Number of cross-balanced factorizations of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 2, 5, 1, 1, 1, 3, 1
Offset: 1
Keywords
Examples
The cross-balanced factorizations for n = 12, 24, 36, 72, 144, 240: 2*6 4*6 4*9 2*4*9 4*4*9 8*30 3*4 2*2*6 6*6 2*6*6 4*6*6 12*20 2*3*4 2*2*9 3*4*6 2*2*4*9 5*6*8 2*3*6 2*2*2*9 2*2*6*6 2*4*30 3*3*4 2*2*3*6 2*3*4*6 2*6*20 2*3*3*4 3*3*4*4 2*8*15 2*2*2*2*9 3*4*20 2*2*2*3*6 3*8*10 2*2*3*3*4 4*5*12 2*10*12 2*3*5*8 2*2*2*30 2*2*3*20 2*2*5*12
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Positions of terms > 1 are A126706.
Positions of 1's are A303554.
The co-balanced version is A340596.
The version for unlabeled multiset partitions is A340651.
The balanced version is A340653.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A320655 counts factorizations into semiprimes.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 have an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340656 have no twice-balanced factorizations.
- A340657 have a twice-balanced factorization.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],#=={}||PrimeNu[n]==Max[PrimeOmega/@#]&]],{n,100}]
-
PARI
A340654(n, m=n, om=omega(n),mbo=0) = if(1==n,(mbo==om), sumdiv(n, d, if((d>1)&&(d<=m), A340654(n/d, d, om, max(mbo,bigomega(d)))))); \\ Antti Karttunen, Jun 19 2024
Extensions
Data section extended up to a(105) by Antti Karttunen, Jun 19 2024
Comments