A340666 A(n,k) is derived from n by replacing each 0 in its binary representation with a string of k 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 1, 0, 1, 8, 3, 4, 3, 0, 1, 16, 3, 16, 5, 3, 0, 1, 32, 3, 64, 9, 6, 7, 0, 1, 64, 3, 256, 17, 12, 7, 1, 0, 1, 128, 3, 1024, 33, 24, 7, 8, 3, 0, 1, 256, 3, 4096, 65, 48, 7, 64, 9, 3, 0, 1, 512, 3, 16384, 129, 96, 7, 512, 33, 10, 7
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 8, 16, 32, 64, 128, 256, ... 3, 3, 3, 3, 3, 3, 3, 3, 3, ... 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, ... 3, 5, 9, 17, 33, 65, 129, 257, 513, ... 3, 6, 12, 24, 48, 96, 192, 384, 768, ... 7, 7, 7, 7, 7, 7, 7, 7, 7, ... 1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, ... ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> Bits[Join](subs(0=[0$k][], Bits[Split](n))): seq(seq(A(n, d-n), n=0..d), d=0..12); # second Maple program: A:= proc(n, k) option remember; `if`(n<2, n, `if`(irem(n, 2, 'r')=1, A(r, k)*2+1, A(r, k)*2^k)) end: seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
A[n_, k_] := FromDigits[IntegerDigits[n, 2] /. 0 -> Sequence @@ Table[0, {k}], 2]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 02 2021 *)