cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340675 Exponential of Mangoldt function conjugated by Tek's flip: a(n) = A225546(A014963(A225546(n))).

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 16, 2, 1, 2, 1, 2, 2, 2, 1, 4, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 16, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 4, 2, 2, 2, 1, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 01 2021

Keywords

Comments

Nonunit squarefree numbers take the value 2, other nonsquares take the value 1, and squares take the square of the value taken by their square root.

Crossrefs

Sequences used in a definition of this sequence: A014963, A048298, A225546, A267116, A297108, A340676.
Positions of 1's: {1} U A340681, 2's: A005117 \ {1}, of 4's: A062503 \ {1}, of 16's: A113849.
Positions of terms > 1: A340682, of terms > 2: A340674.
Sequences used to express relationship between terms of this sequence: A003961, A331590.

Programs

  • PARI
    A340675(n) = if(1==n,n,if(issquarefree(n), 2, if(!issquare(n), 1, A340675(sqrtint(n))^2)));

Formula

a(n) = 2^A048298(A267116(n)).
If A340673(n) = 1, then a(n) = 1, otherwise a(n) = 2^A297108(A340673(n)).
If A340676(n) = 0, then a(n) = 1, otherwise a(n) = 2^(2^(A340676(n)-1)).
If n = s^(2^k), s squarefree >= 2, k >= 0, then a(n) = 2^(2^k), otherwise a(n) = 1.
For n, k > 1, if a(n) = a(k) then a(A331590(n, k)) = a(n), otherwise a(A331590(n, k)) = 1.
a(n^2) = a(n)^2.
a(A003961(n)) = a(n).
a(A051144(n)) = 1.
a(n) = 1 if and only if A331591(n) <> 1, otherwise a(n) = 2^A051903(n).

A340674 Numbers of the form s^(2^e), where s is a squarefree number, and e >= 1.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 81, 100, 121, 169, 196, 225, 256, 289, 361, 441, 484, 529, 625, 676, 841, 900, 961, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2401, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2021

Keywords

Crossrefs

Positions of terms larger than 2 in A340673 (also in A340675), and of terms larger than 1 in A340676.
Subsequence of A072777 and of A340682.

Programs

  • Mathematica
    Select[Range[10^4], Length[(u = Union[FactorInteger[#][[;; , 2]]])] == 1 && u[[1]] > 1 && u[[1]] == 2^IntegerExponent[u[[1]], 2] &] (* Amiram Eldar, Feb 08 2021 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    isA340674(n) = { my(b,e); (((e=ispower(n,,&b))>0)&&issquarefree(b)&&A209229(e)); };
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A340674(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return n+x-sum(g(integer_nthroot(x,1<Chai Wah Wu, Jun 01 2025

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2^k)/zeta(2^(k+1))-1) = 0.6018231854... - Amiram Eldar, Feb 08 2021

A340676 If n is of the form s^(2^e), where s is a squarefree number, and e >= 0, then a(n) = 1+e, otherwise a(n) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 3, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 3, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Positions of zeros: {1} U A340681, of 1's: A005117 \ {1}, of 2's: A062503 \ {1}, of 3's: A113849.
Positions of nonzero terms: A340682, of terms > 1: A340674.

Programs

  • Mathematica
    a[1] = 0; a[n_] := If[Length[(u = Union[FactorInteger[n][[;; , 2]]])] == 1 && u[[1]] == 2^(e = IntegerExponent[u[[1]], 2]), e + 1, 0]; Array[a, 100] (* Amiram Eldar, Feb 10 2021 *)
  • PARI
    A001511(n) = 1+valuation(n,2);
    A209229(n) = (n && !bitand(n,n-1));
    A104117(n) = (A209229(n)*A001511(n));
    A267116(n) = if(n>1, fold(bitor, factor(n)[, 2]), 0);
    A340676(n) = if(1==n,0,A104117(A267116(n)));

Formula

a(n) = A297109(A225546(n)).
For n > 1, a(n) = A104117(A267116(n)). - Peter Munn, Feb 05 2021
Showing 1-3 of 3 results.