A340674 Numbers of the form s^(2^e), where s is a squarefree number, and e >= 1.
4, 9, 16, 25, 36, 49, 81, 100, 121, 169, 196, 225, 256, 289, 361, 441, 484, 529, 625, 676, 841, 900, 961, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2401, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
Select[Range[10^4], Length[(u = Union[FactorInteger[#][[;; , 2]]])] == 1 && u[[1]] > 1 && u[[1]] == 2^IntegerExponent[u[[1]], 2] &] (* Amiram Eldar, Feb 08 2021 *)
-
PARI
A209229(n) = (n && !bitand(n,n-1)); isA340674(n) = { my(b,e); (((e=ispower(n,,&b))>0)&&issquarefree(b)&&A209229(e)); };
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A340674(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) def f(x): return n+x-sum(g(integer_nthroot(x,1<
Chai Wah Wu, Jun 01 2025
Formula
Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2^k)/zeta(2^(k+1))-1) = 0.6018231854... - Amiram Eldar, Feb 08 2021