A340680 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(1+i) = A007814(1+j) and A292251(i) = A292251(j), for all i, j >= 1.
1, 2, 3, 2, 1, 2, 4, 2, 1, 2, 5, 2, 6, 2, 7, 2, 1, 2, 3, 2, 1, 2, 4, 2, 1, 2, 8, 2, 1, 2, 9, 2, 10, 2, 3, 2, 10, 2, 11, 2, 1, 2, 3, 2, 1, 2, 12, 2, 1, 2, 3, 2, 10, 2, 11, 2, 1, 2, 5, 2, 1, 2, 13, 2, 10, 2, 8, 2, 1, 2, 11, 2, 1, 2, 3, 2, 6, 2, 14, 2, 1, 2, 8, 2, 1, 2, 4, 2, 1, 2, 5, 2, 10, 2, 15, 2, 10, 2, 5, 2, 1, 2, 16, 2, 1
Offset: 1
Keywords
Links
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A007814(n) = valuation(n,2); A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961 A048673(n) = (A003961(n)+1)/2; A292251(n) = valuation(A048673(n),3); Aux340680(n) = [A007814(1+n), A292251(n)]; v340680 = rgs_transform(vector(up_to, n, Aux340680(n))); A340680(n) = v340680[n];
Formula
a(2n) = 2.
Comments