A340690 Numbers with a factorization whose greatest factor is 2^k, where k is the number of factors.
2, 8, 12, 16, 32, 48, 64, 72, 80, 96, 112, 120, 128, 144, 160, 168, 192, 200, 224, 240, 256, 280, 288, 320, 336, 384, 392, 432, 448, 480, 512, 576, 640, 672, 704, 720, 768, 800, 832, 864, 896, 960, 1008, 1024, 1056, 1120, 1152, 1200, 1248, 1280, 1296, 1344
Offset: 1
Keywords
Examples
The initial terms and a valid factorization of each: 2 = 2 168 = 3*7*8 512 = 2*2*2*2*32 8 = 2*4 192 = 2*2*3*16 576 = 2*2*9*16 12 = 3*4 200 = 5*5*8 640 = 2*2*10*16 16 = 4*4 224 = 4*7*8 672 = 2*3*7*16 32 = 2*2*8 240 = 5*6*8 704 = 2*2*11*16 48 = 2*3*8 256 = 2*2*4*16 720 = 3*3*5*16 64 = 2*4*8 280 = 5*7*8 768 = 2*2*2*3*32 72 = 3*3*8 288 = 2*3*3*16 800 = 2*5*5*16 80 = 2*5*8 320 = 2*2*5*16 832 = 2*2*13*16 96 = 2*6*8 336 = 6*7*8 864 = 2*3*9*16 112 = 2*7*8 384 = 2*2*6*16 896 = 2*2*14*16 120 = 3*5*8 392 = 7*7*8 960 = 2*2*15*16 128 = 2*2*2*16 432 = 3*3*3*16 1008 = 3*3*7*16 144 = 3*6*8 448 = 2*2*7*16 1024 = 2*2*2*4*32 160 = 4*5*8 480 = 2*3*5*16 1056 = 2*3*11*16
Crossrefs
Partitions of the prescribed type are counted by A340611.
The conjugate version is A340689.
A047993 counts balanced partitions.
A316439 counts factorizations by product and length.
A340596 counts co-balanced factorizations.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[1000],Select[facs[#],2^Length[#]==Max@@#&]!={}&]