cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340656 Numbers without a twice-balanced factorization.

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 42, 46, 48, 49, 51, 55, 57, 58, 60, 62, 64, 65, 66, 69, 70, 72, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 102, 105, 106, 108, 110, 111, 112, 114, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The sequence of terms together with their prime indices begins:
     4: {1,1}          33: {2,5}          64: {1,1,1,1,1,1}
     6: {1,2}          34: {1,7}          65: {3,6}
     8: {1,1,1}        35: {3,4}          66: {1,2,5}
     9: {2,2}          38: {1,8}          69: {2,9}
    10: {1,3}          39: {2,6}          70: {1,3,4}
    14: {1,4}          42: {1,2,4}        72: {1,1,1,2,2}
    15: {2,3}          46: {1,9}          74: {1,12}
    16: {1,1,1,1}      48: {1,1,1,1,2}    77: {4,5}
    21: {2,4}          49: {4,4}          78: {1,2,6}
    22: {1,5}          51: {2,7}          80: {1,1,1,1,3}
    25: {3,3}          55: {3,5}          81: {2,2,2,2}
    26: {1,6}          57: {2,8}          82: {1,13}
    27: {2,2,2}        58: {1,10}         84: {1,1,2,4}
    30: {1,2,3}        60: {1,1,2,3}      85: {3,7}
    32: {1,1,1,1,1}    62: {1,11}         86: {1,14}
For example, the factorizations of 48 with (2) and (3) equal are: (2*2*2*6), (2*2*3*4), (2*4*6), (3*4*4), but since none of these has length 2, the sequence contains 48.
		

Crossrefs

Positions of zeros in A340655.
The complement is A340657.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340596 counts co-balanced factorizations.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340653 counts balanced factorizations.
- A340654 counts cross-balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]=={}&]

A340657 Numbers with a twice-balanced factorization.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 36, 37, 40, 41, 43, 44, 45, 47, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 88, 89, 92, 97, 98, 99, 100, 101, 103, 104, 107, 109, 113, 116, 117, 120, 124, 127, 131, 135, 136, 137
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            29: {10}          59: {17}
      2: {1}           31: {11}          61: {18}
      3: {2}           36: {1,1,2,2}     63: {2,2,4}
      5: {3}           37: {12}          67: {19}
      7: {4}           40: {1,1,1,3}     68: {1,1,7}
     11: {5}           41: {13}          71: {20}
     12: {1,1,2}       43: {14}          73: {21}
     13: {6}           44: {1,1,5}       75: {2,3,3}
     17: {7}           45: {2,2,3}       76: {1,1,8}
     18: {1,2,2}       47: {15}          79: {22}
     19: {8}           50: {1,3,3}       83: {23}
     20: {1,1,3}       52: {1,1,6}       88: {1,1,1,5}
     23: {9}           53: {16}          89: {24}
     24: {1,1,1,2}     54: {1,2,2,2}     92: {1,1,9}
     28: {1,1,4}       56: {1,1,1,4}     97: {25}
The twice-balanced factorizations of 1920 (with prime indices {1,1,1,1,1,1,1,2,3}) are (8*8*30) and (8*12*20), so 1920 is in the sequence.
		

Crossrefs

The alt-balanced version is A340597.
Positions of nonzero terms in A340655.
The complement is A340656.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340653 counts balanced factorizations.
- A340654 counts cross-balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]!={}&]

A340611 Number of integer partitions of n of length 2^k where k is the greatest part.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 29, 32, 34, 36, 38, 41, 42, 45, 47, 50, 52, 56, 58, 63, 66, 71, 75, 83, 88, 98, 106, 118, 128, 143, 155, 173, 188, 208, 226, 250, 270, 297, 321, 350
Offset: 0

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Comments

Also the number of integer partitions of n with maximum 2^k where k is the length.

Examples

			The partitions for n = 12, 14, 16, 22, 24:
  32211111  32222111  32222221  33333322          33333333
  33111111  33221111  33222211  33333331          4222221111111111
            33311111  33322111  4222111111111111  4322211111111111
                      33331111  4321111111111111  4332111111111111
                                4411111111111111  4422111111111111
                                                  4431111111111111
The conjugate partitions:
  (8,2,2)  (8,3,3)  (8,4,4)  (8,7,7)     (8,8,8)
  (8,3,1)  (8,4,2)  (8,5,3)  (8,8,6)     (16,3,3,2)
           (8,5,1)  (8,6,2)  (16,2,2,2)  (16,4,2,2)
                    (8,7,1)  (16,3,2,1)  (16,4,3,1)
                             (16,4,1,1)  (16,5,2,1)
                                         (16,6,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length/max divides n (A316413/A326836).
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.
A340689 have a factorization of length 2^max.
A340690 have a factorization of maximum 2^length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]==2^Max@@#&]],{n,0,30}]

A340689 Numbers with a factorization of length 2^k into factors > 1, where k is the greatest factor.

Original entry on oeis.org

1, 16, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 131072, 196608, 262144, 294912, 393216, 442368, 524288, 589824, 663552, 786432, 884736, 995328, 1048576, 1179648, 1327104, 1492992, 1572864, 1769472, 1990656, 2097152, 2239488, 2359296, 2654208, 2985984, 3145728
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Examples

			The initial terms and a valid factorization of each are:
         1 =
        16 = 2*2*2*2
       384 = 2*2*2*2*2*2*2*3
       576 = 2*2*2*2*2*2*3*3
       864 = 2*2*2*2*2*3*3*3
      1296 = 2*2*2*2*3*3*3*3
      1944 = 2*2*2*3*3*3*3*3
      2916 = 2*2*3*3*3*3*3*3
      4374 = 2*3*3*3*3*3*3*3
      6561 = 3*3*3*3*3*3*3*3
    131072 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*4
    196608 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*3*4
    262144 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*4*4
    294912 = 2*2*2*2*2*2*2*2*2*2*2*2*2*3*3*4
		

Crossrefs

Partitions of the prescribed type are counted by A340611.
The conjugate version is A340690.
A001055 counts factorizations, with strict case A045778.
A047993 counts balanced partitions.
A316439 counts factorizations by product and length.
A340596 counts co-balanced factorizations.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],Length[#]==2^Max@@#&]!={}&]

Extensions

More terms from Chai Wah Wu, Feb 01 2021
Showing 1-4 of 4 results.