cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340714 a(n) is the sum of (n-2*j) for j < n/2 coprime to n.

Original entry on oeis.org

0, 0, 1, 2, 4, 4, 9, 8, 13, 12, 25, 12, 36, 24, 32, 32, 64, 28, 81, 40, 66, 60, 121, 48, 124, 84, 121, 84, 196, 56, 225, 128, 170, 144, 216, 108, 324, 180, 240, 160, 400, 120, 441, 220, 272, 264, 529, 192, 513, 252, 416, 312, 676, 244, 560, 336, 522, 420, 841, 240, 900, 480, 570, 512, 792, 320
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 17 2021

Keywords

Comments

Sum of differences j-i for 0 < i < j coprime to n with i+j = n.
If p is an odd prime, a(p^k) = (p-1)*(p^(2*k-1)-1)/4.
Primes in this sequence are a(4) = 2 and a(3^k) = (3^(2*k-1)-1)/2 where 2*k-1 is in A028491.

Examples

			For n = 10, a(10) = (10-2*1) + (10-2*3) = 12.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local j; add(n-2*j, j= select(t -> igcd(t,n)=1, [$1..(n-1)/2])) end proc:
    map(f, [$1..100]);
  • Mathematica
    Table[Sum[(n - 2 i) Floor[1/GCD[n - i, n]], {i, Floor[(n-1)/2]}], {n, 80}] (* Wesley Ivan Hurt, Jan 18 2021 *)

Formula

a(n) = A023896(n) - 2*A066840(n) for n >= 3.
a(n) = Sum_{k=1..floor((n-1)/2)} floor(1/gcd(n,n-k)) * (n-2*k). - Wesley Ivan Hurt, Jan 18 2021