A340747 Numbers in array A322744 that do not have a unique decomposition into numbers of A307002.
24, 40, 60, 67, 72, 88, 96, 100, 120, 132, 136, 144, 147, 150, 160, 168, 180, 184, 200, 204, 216, 220, 227, 232, 240, 264, 267, 276, 280, 288, 300, 307, 312, 323, 328, 330, 340, 348, 352, 360, 367, 376, 384, 387, 396, 400, 408, 420, 424
Offset: 1
Keywords
Examples
60 = A322744(4,10). Also 60 = A322744(6,7) and 60 = A322744(2,20). These decompositions are the same but different from A322744(4,10) as follows. 6 = A322744(2,2) and 20 = A322744(2,7), making 60 = A322744(A322744(2,2), 7) and 60 = A322744(2, A322744(2,7)). Thus 60 can be written as A322744(2,2,7), a well-defined composition because A322744(n,k) is associative. 2,4,7 and 10 are in A307002, thus A322744(4,10) and A322744(2,2,7) are different decompositions of 60, so 60 is in the sequence. 88 is in the sequence because 88 = A322744(3,22) = A322744(4,15) and 3,4,15 and 22 are in A307002. Examples of A322744(4,p) = A322744(7,q) = A322744(10,r) with p = q + r: 60*1 + 40 = 100 = A322744(4,17) = A322744(7,10) = A322744(10,7) and 17 = 10 + 7, which works by commuting one of the decompositions. Note that 60 also works this way. 60 = A322744(4,10) = A322744(7,6) = A322744(10,4) and 10 = 6 + 4. 60*3 = 180 = A322744(4,30) = A322744(7,18) = A322744(10,12) and 30 = 18 + 12. 60*3 + 40 = 220 = A322744(4,37) = A322744(7,22) = A322744(10,15) and 37 = 22 + 15. See A340746 for more examples.
Links
- David Lovler, The first 49 terms and their decompositions in A322744(n,k).
Comments