A340785 Number of factorizations of 2n into even factors > 1.
1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 11, 1, 2, 1, 6, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 12, 1, 3, 1, 4, 1, 3, 1, 7, 1, 2, 1, 7, 1, 2, 1, 15, 1, 3, 1, 4, 1, 3, 1, 12, 1, 2, 1, 4, 1, 3, 1, 12, 1, 2, 1, 7, 1
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are: 4 8 16 24 32 64 72 96 2*2 2*4 2*8 4*6 4*8 8*8 2*36 2*48 2*2*2 4*4 2*12 2*16 2*32 4*18 4*24 2*2*4 2*2*6 2*2*8 4*16 6*12 6*16 2*2*2*2 2*4*4 2*4*8 2*6*6 8*12 2*2*2*4 4*4*4 2*2*18 2*6*8 2*2*2*2*2 2*2*16 4*4*6 2*2*2*8 2*2*24 2*2*4*4 2*4*12 2*2*2*2*4 2*2*4*6 2*2*2*2*2*2 2*2*2*12 2*2*2*2*6
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Note: A-numbers of Heinz-number sequences are in parentheses below.
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A340653 counts balanced factorizations.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A236913 counts partitions of even length and sum.
Even bisection of A349906.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],Select[#,OddQ]=={}&]],{n,2,100,2}]
-
PARI
A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s)); A340785(n) = A349906(2*n); \\ Antti Karttunen, Dec 13 2021
Formula
a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021