A340788 Heinz numbers of integer partitions of negative rank.
4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 144, 150, 160, 162, 168, 180, 192, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 320, 324, 336, 352, 360, 375, 378, 384, 392, 400, 405
Offset: 1
Keywords
Examples
The sequence of partitions together with their Heinz numbers begins: 4: (1,1) 80: (3,1,1,1,1) 8: (1,1,1) 81: (2,2,2,2) 12: (2,1,1) 90: (3,2,2,1) 16: (1,1,1,1) 96: (2,1,1,1,1,1) 18: (2,2,1) 100: (3,3,1,1) 24: (2,1,1,1) 108: (2,2,2,1,1) 27: (2,2,2) 112: (4,1,1,1,1) 32: (1,1,1,1,1) 120: (3,2,1,1,1) 36: (2,2,1,1) 128: (1,1,1,1,1,1,1) 40: (3,1,1,1) 135: (3,2,2,2) 48: (2,1,1,1,1) 144: (2,2,1,1,1,1) 54: (2,2,2,1) 150: (3,3,2,1) 60: (3,2,1,1) 160: (3,1,1,1,1,1) 64: (1,1,1,1,1,1) 162: (2,2,2,2,1) 72: (2,2,1,1,1) 168: (4,2,1,1,1)
Links
- Freeman J. Dyson, A new symmetry of partitions, Journal of Combinatorial Theory 7.1 (1969): 56-61.
- FindStat, St000145: The Dyson rank of a partition
Crossrefs
Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A064173.
The positive version is (A340787).
A001222 counts prime factors.
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
Programs
-
Mathematica
Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]
Comments