cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340798 Square array read by descending antidiagonals. Let G be a simple labeled graph on n nodes. T(n,k) is the number of ways to give G an acyclic orientation and a coloring function C:V(G) -> {1,2,...,k} so that u->v implies C(u) >= C(v) for all u,v in V(G), n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 25, 0, 1, 4, 21, 122, 543, 0, 1, 5, 36, 339, 3550, 29281, 0, 1, 6, 55, 724, 12477, 241442, 3781503, 0, 1, 7, 78, 1325, 32316, 1035843, 37717630, 1138779265, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jan 21 2021

Keywords

Examples

			Array begins
  1,     1,      1,       1,       1,       1, ...
  0,     1,      2,       3,       4,       5, ...
  0,     3,     10,      21,      36,      55, ...
  0,    25,    122,     339,     724,    1325, ...
  0,   543,   3550,   12477,   32316,   69595, ...
  0, 29281, 241442, 1035843, 3180484, 7934885, ...
  ...
		

Crossrefs

Cf. A003024 (column k=1), A339934 (column k=2), A322280, A219765.

Programs

  • Mathematica
    nn = 6; e[x_] := Sum[x^n/(n! 2^Binomial[n, 2]), {n, 0, nn}];
    Prepend[Table[Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[
          Series[1/e[-x]^k, {x, 0, nn}], x], {k, 1, nn}],PadRight[{1}, nn + 1]] // Transpose // Grid

Formula

Let E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)). Then Sum_{n>=0} T(n,k)*x^n/(n!*2^binomial(n,2)) = 1/E(-x)^k.
T(n,k) = (-1)^n p_n(-k) where p_n is the n-th polynomial described in A219765.