A340798 Square array read by descending antidiagonals. Let G be a simple labeled graph on n nodes. T(n,k) is the number of ways to give G an acyclic orientation and a coloring function C:V(G) -> {1,2,...,k} so that u->v implies C(u) >= C(v) for all u,v in V(G), n >= 0, k >= 0.
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 25, 0, 1, 4, 21, 122, 543, 0, 1, 5, 36, 339, 3550, 29281, 0, 1, 6, 55, 724, 12477, 241442, 3781503, 0, 1, 7, 78, 1325, 32316, 1035843, 37717630, 1138779265, 0
Offset: 0
Examples
Array begins 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 3, 10, 21, 36, 55, ... 0, 25, 122, 339, 724, 1325, ... 0, 543, 3550, 12477, 32316, 69595, ... 0, 29281, 241442, 1035843, 3180484, 7934885, ... ...
Links
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178.
Programs
-
Mathematica
nn = 6; e[x_] := Sum[x^n/(n! 2^Binomial[n, 2]), {n, 0, nn}]; Prepend[Table[Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[ Series[1/e[-x]^k, {x, 0, nn}], x], {k, 1, nn}],PadRight[{1}, nn + 1]] // Transpose // Grid
Formula
Let E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)). Then Sum_{n>=0} T(n,k)*x^n/(n!*2^binomial(n,2)) = 1/E(-x)^k.
T(n,k) = (-1)^n p_n(-k) where p_n is the n-th polynomial described in A219765.