A340799 a(n) is the smallest prime p such that p + 1 has 2n divisors.
2, 5, 11, 23, 47, 59, 191, 167, 179, 239, 5119, 359, 20479, 2111, 719, 839, 1114111, 1259, 786431, 3023, 2879, 15359, 348127231, 3359, 22031, 266239, 6299, 6719, 22280142847, 5039, 559419490303, 7559, 156671, 7798783, 25919, 10079, 1168231104511, 5505023
Offset: 1
Examples
a(4) = 23 because 23 is the smallest prime p such that p + 1 has 2*4 divisors; tau(24) = 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..255
Programs
-
Magma
Ax:=func
; [Ax(n): n in[1..20]]; -
Maple
g:= proc(n,k) # lists of integers > k whose product is n option remember; local F,m; if n = 1 then return [[]] elif k >= n then return [] fi; F:= select(`>`,numtheory:-divisors(n),k); [seq(op(map(t -> [m,op(t)], procname(n/m,m-1))), m=F)] end proc: children:= proc(t) local m,nt,S,i,qs,t3s,t1s; nt:= nops(t[3]); S:= select(i -> t[3][i] <> 2, [$1..nt]); if S = [] then m:= nt else m:= min(S) fi; qs:= [seq(nextprime(t[3][i]),i=1..m)]; t3s:= [seq(subsop(i = qs[i], t[3]), i = 1..m)]; t1s:= [seq(t[1]*(qs[i]/t[3][i])^t[2][i], i=1..m)]; [seq([t1s[i],t[2],t3s[i]],i=1..m)] end proc: f:= proc(d) local pq,s,t,i; uses priqueue; initialize(pq); for t in g(2*d,1) do insert([-mul(2^(t[i]-1),i=1..nops(t)),t -~ 1, [2$nops(t)]],pq) od; do t:= extract(pq); if nops(convert(t[3],set)) = nops(t[3]) and isprime(-t[1]-1) then return -t[1]-1 fi; for s in children(t) do insert(s,pq) od od: end proc: map(f, [$1..40]); # Robert Israel, Jan 12 2025
Formula
A000005(a(n) + 1) = 2n.
Comments