A340828 Number of strict integer partitions of n whose maximum part is a multiple of their length.
1, 1, 2, 1, 2, 3, 3, 2, 4, 5, 6, 6, 7, 8, 11, 10, 13, 17, 18, 21, 24, 27, 30, 35, 39, 46, 53, 61, 68, 79, 87, 97, 110, 123, 139, 157, 175, 196, 222, 247, 278, 312, 347, 385, 433, 476, 531, 586, 651, 720, 800, 883, 979, 1085, 1200, 1325, 1464, 1614, 1777
Offset: 1
Keywords
Examples
The a(1) = 1 through a(16) = 10 partitions (A..G = 10..16): 1 2 3 4 5 6 7 8 9 A B C D E F G 21 41 42 43 62 63 64 65 84 85 86 87 A6 321 61 81 82 83 A2 A3 A4 A5 C4 621 631 A1 642 C1 C2 C3 E2 4321 632 651 643 653 E1 943 641 921 652 932 654 952 931 941 942 961 8321 951 C31 C21 8431 8421 8521 54321
Links
Crossrefs
Note: A-numbers of Heinz-number sequences are in parentheses below.
A096401 counts strict partition with length equal to minimum.
A102627 counts strict partitions with length dividing sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340829 counts strict partitions with Heinz number divisible by sum.
A340830 counts strict partitions with all parts divisible by length.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Max@@#,Length[#]]&]],{n,30}]