A340830 Number of strict integer partitions of n such that every part is a multiple of the number of parts.
1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1
Keywords
Examples
The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30: 1 6 10 14 18 20 24 26 30 4,2 6,4 8,6 10,8 12,8 16,8 18,8 22,8 8,2 10,4 12,6 14,6 18,6 20,6 24,6 12,2 14,4 16,4 20,4 22,4 26,4 16,2 18,2 22,2 24,2 28,2 9,6,3 14,10 14,12 16,14 12,9,3 16,10 18,12 15,6,3 20,10 15,9,6 18,9,3 21,6,3 15,12,3
Crossrefs
Note: A-numbers of Heinz-number sequences are in parentheses below.
The case where length divides sum also is A340827.
The version for factorizations is A340851.
Factorization of this type are counted by A340853.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@IntegerQ/@(#/Length[#])&]],{n,30}]
Formula
a(n) = Sum_{d|n} A008289(n/d, d).