A340833 a(n) is the number of vertices in the diagram of the symmetric representation of sigma(n).
4, 6, 7, 10, 9, 12, 11, 14, 14, 15, 13, 18, 13, 17, 20, 22, 15, 22, 15, 22, 23, 21, 17, 26, 22, 21, 25, 28, 19, 30, 19, 30, 27, 23, 26, 32, 21, 25, 29, 34, 21, 34, 21, 33, 36, 27, 23, 38, 30, 38, 31, 35, 23, 38, 35, 42, 33, 29, 25, 42, 25, 29, 42, 42, 37, 44, 27
Offset: 1
Examples
Illustration of initial terms: . _ _ _ _ . _ _ _ |_ _ _ |_ . _ _ _ |_ _ _| | |_ . _ _ |_ _ |_ |_ _ |_ _ | . _ _ |_ _|_ |_ | | | | | . _ |_ | | | | | | | | | . |_| |_| |_| |_| |_| |_| . n: 1 2 3 4 5 6 a(n): 4 6 7 10 9 12 . For n = 6 the diagram has 12 vertices so a(6) = 12. On the other hand the diagram has 12 edges and only one part or region, so applying Euler's formula we have that a(6) = 12 - 1 + 1 = 12. . _ _ _ _ _ . _ _ _ _ _ |_ _ _ _ _| . _ _ _ _ |_ _ _ _ | |_ _ . |_ _ _ _| | |_ |_ | . |_ |_ |_ _ |_|_ _ . |_ _ |_ _ | | | . | | | | | | . | | | | | | . | | | | | | . |_| |_| |_| . n: 7 8 9 a(n): 11 14 14 . For n = 9 the diagram has 14 vertices so a(9) = 14. On the other hand the diagram has 16 edges and three parts or regions, so applying Euler's formula we have that a(9) = 16 - 3 + 1 = 14. Another way for the illustration of initial terms is as follows: -------------------------------------------------------------------------- . n a(n) Diagram -------------------------------------------------------------------------- _ 1 4 |_| _ _| | _ 2 6 |_ _| | | _ _ _|_| | | _ 3 7 |_ _| _| | | | _ _ _| _| | | | | _ 4 10 |_ _ _| _|_| | | | | _ _ _ _| _ _| | | | | | _ 5 9 |_ _ _| | _| | | | | | | _ _ _ _| _| _|_| | | | | | | _ 6 12 |_ _ _ _| _| _ _| | | | | | | | _ _ _ _ _| _| _ _| | | | | | | | | _ 7 11 |_ _ _ _| | _| _ _|_| | | | | | | | | _ _ _ _ _| | _| | _ _| | | | | | | | | | _ 8 14 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | | _ _ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | | 9 14 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | | _ _ _ _ _| | _| _| _ _| | | | | | | | | 10 15 |_ _ _ _ _ _| | _| | _ _|_| | | | | | | _ _ _ _ _ _| | _| | _ _ _| | | | | | 11 13 |_ _ _ _ _ _| | _ _| _| | _ _ _| | | | | _ _ _ _ _ _| | _ _| _|_| _ _ _|_| | | 12 18 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| | _ _ _ _ _ _ _| | _| | _| | _ _ _| 13 13 |_ _ _ _ _ _ _| | | _| _| _| | _ _ _ _ _ _ _| | |_ _| _| _| 14 17 |_ _ _ _ _ _ _ _| | _ _| _| _ _ _ _ _ _ _ _| | _ _| 15 20 |_ _ _ _ _ _ _ _| | | _ _ _ _ _ _ _ _| | 16 22 |_ _ _ _ _ _ _ _ _| ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log-log scatterplot of a(n) for n=1..10^4, accentuating a(m) for m=1..2^8 for clarity, and labeling a(k) for k=1..24.
Crossrefs
Programs
-
Mathematica
MapAt[# + 1 &, #, 1] &@ Map[Length@ Union[Join @@ #] - 1 &, Partition[Prepend[#, {{0, 0}}], 2, 1]] &@ Table[{{0, 0}}~Join~Accumulate[Join[#, Reverse[Reverse /@ (-1*#)]]] &@ MapIndexed[Which[#2 == 1, {#1, 0}, Mod[#2, 2] == 0, {0, #1}, True, {-#1, 0}] & @@ {#1, First[#2]} &, If[Length[#] == 0, {n, n}, Join[{n}, #, {n - Total[#]}]]] &@ Differences[n - Array[(Ceiling[(n + 1)/# - (# + 1)/2]) &, Floor[(Sqrt[8 n + 1] - 1)/2]]], {n, 67}] (* Michael De Vlieger, Oct 27 2021 *)
Extensions
Terms a(33) and beyond from Michael De Vlieger, Oct 27 2021
Comments