cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340834 Fixed points of A341885.

Original entry on oeis.org

12, 1222, 1437286, 3441373, 1032893366969
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 22 2021

Keywords

Comments

Numbers n such that A341885(n) = n.
Includes 2*p*q if p and q are primes such that p^2-4*p*q+q^2+p+q+6 = 0. This includes 12 for p=2, q=3, 1222 for p=13,q=47, 1437286 for p=439, q=1637, and 76498942675946443126 for p=3201392659, q=11947760057.
Another term: 6538810199342921107066977217325653068509 = 13 * 4401624135264074597*114272683103433355069. - Chai Wah Wu, Feb 25 2021

Examples

			a(2) = 1222 is a term because 1222 = 2*13*47 and A341885(1222) = 2*3/2 + 13*14/2 + 47*48/2 = 1222.
		

Crossrefs

Cf. A341885.

Programs

  • Maple
    f:= proc(n) local F,t;
      F:= ifactors(n)[2];
      add(t[1]*(t[1]+1)/2*t[2],t=F)
    end proc:
    select(t -> f(t)=t, [$1..4000000]);
  • Mathematica
    Block[{a = {}}, Monitor[Do[If[# == i, AppendTo[a, i]] &@ Total[PolygonalNumber@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[i]]], {i, 2, 4*10^6}], i]; a] (* Michael De Vlieger, Feb 22 2021 *)
  • Python
    from sympy import factorint
    A340834_list = [n for n in range(2,10**4) if n == sum(k*m*(m+1)//2 for m,k in factorint(n).items())] # Chai Wah Wu, Feb 25 2021

Formula

A341885(a(n)) = a(n).

Extensions

a(5) from Martin Ehrenstein, Mar 07 2021