cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A340213 Decimal expansion of the constant kappa(-5) = (1/2)*sqrt(sqrt(5)*log(9+4*sqrt(5))/(3*Pi))*sqrt(A340794*A340665).

Original entry on oeis.org

5, 1, 5, 9, 3, 9, 4, 8, 2, 2, 7, 9, 6, 5, 3, 4, 8, 4, 9, 5, 3, 1, 2, 5, 0, 1, 3, 9, 4, 0, 5, 5, 6, 3, 7, 2, 6, 9, 8, 1, 0, 9, 9, 9, 2, 4, 6, 8, 6, 8, 1, 4, 7, 4, 8, 5, 8, 7, 1, 7, 9, 6, 2, 5, 2, 2, 7, 4, 4, 9, 7, 1, 7, 6, 1, 9, 5, 7, 7, 2, 2, 7, 6, 1, 1, 9, 4, 3, 1, 3, 1, 6, 2, 6, 5, 8, 8, 9, 8, 3, 0, 3, 6
Offset: 0

Views

Author

Artur Jasinski, Jan 26 2021

Keywords

Comments

For general definition of the constants kappa(n) see Steven Finch 2009 p. 7, for this particular case kappa(-5) see p. 11.

Examples

			0.51593948227965348495312501394...
		

Crossrefs

Formula

Equals exp(-gamma/2)*log((1+sqrt(5))/2)*sqrt(5/Pi)/(2*C(5,2)*C(5,3)), where C(5,2) and C(5,3) are Mertens constants see A340839.
Equals 2*A340866*exp(gamma/4)*((1/5)*log((1+sqrt(5))/2))^(3/4)/sqrt(A340004).
Equals 2*A340866*exp(gamma/4)*log((1+sqrt(5))/2)/(sqrt(5*Pi)*A340884^(1/4)).
Equals 2*A340839*A340866*exp(gamma/2)*log((1+sqrt(5))/2)/sqrt(5*Pi).
Equals sqrt((1/3)*Pi*log(9+4*sqrt(5)))/(sqrt(5^(3/2)*A340004*A340127)). [Finch 2009 p. 11]
Showing 1-1 of 1 results.