A340908 Primitive numbers m without zero digits such that pod(m + pod(m)) = pod(m) where pod is the product of digits, A007954.
28, 214, 239, 266, 318, 326, 364, 494, 497, 563, 598, 613, 637, 695, 819, 2114, 2139, 2168, 2285, 2313, 2356, 2369, 2419, 2594, 2639, 2791, 3118, 3126, 3148, 3213, 3235, 3238, 3259, 3354, 3365, 3561, 3698, 3786, 4138, 4145, 4188, 4219, 4338, 4346, 4353, 4368, 4395
Offset: 1
Examples
pod(28 + pod(28)) = pod(28 + 2*8) = pod(28 + 16) = pod(44) = 4*4 = 16 = pod(28), hence 28 that does not begin with 1 is a term.
References
- Roman Fedorov, Alexei Belov, Alexander Kovaldzhi, and Ivan Yashchenko, Moscow-Mathematical Olympiads, 2000-2005, Level A, Problem 2, 2003; MSRI, 2011, pp. 15 and 97.
Programs
-
Mathematica
pod[n_] := Times @@ IntegerDigits[n]; q[n_] := First[IntegerDigits[n]] > 1 && (p = pod[n]) > 0 && pod[n + p] == p; Select[Range[5000], q] (* Amiram Eldar, Jan 31 2021 *)
-
PARI
isok(n) = my(d = digits(n), p); vecmin(d) && ((d[1]!=1) && p=vecprod(d)) && (vecprod(digits(n+p)) == p); \\ Michel Marcus, Feb 01 2021
Comments