A340984 Number of prime rectangle tilings with n tiles up to equivalence.
1, 1, 0, 0, 1, 0, 2, 6, 29, 119, 600
Offset: 1
Examples
For n = 5 the a(5) = 1 example looks like _____ | |___| |_|_| | |___|_| . For n = 7 the a(7) = 2 examples look like _______ _______ | |_____| |_____| | |_|___| | |___| | | | |_|_| | |_|_|_| |___|___| |_|_____|
Links
- F. R. K. Chung, E. N. Gilbert, R. L. Graham, J. B. Shearer, and J. H. van Lint, Tiling Rectangles with Rectangles, Mathematics Magazine, 1982.
- Math StackExchange, How many "prime" rectangle tilings are there?
- Benjamin D. Prins, All tilings for n = 9, 10, 11
- Reddit, Distributing a rectangular inheritance.
Extensions
a(9)-a(11) from Benjamin D. Prins, Jun 13 2025
Comments