cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341039 Numbers k such that k divides A341038(k).

Original entry on oeis.org

1, 12, 18, 56, 117, 810, 992, 2091, 16256, 796797, 2488734, 22122192, 57636005, 67100672, 114243682
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 03 2021

Keywords

Comments

Contains no primes.

Examples

			a(3) = 18 is a term because A341038(18) = 198 is divisible by 18.
		

Crossrefs

Includes A139256.
Cf. A341038.

Programs

  • Maple
    f:= proc(n) local D,S,i;
      D:= sort(convert(numtheory:-divisors(n),list));
      S:= ListTools:-PartialSums(D);
      add(S[-i]*D[i],i=1..nops(D))
    end proc:
    select(t -> f(t) mod t = 0, [$1..20000]);

A341117 a(n) = Sum_{i+j>=m+1} d_i * d_j, where d_1 < ... < d_m are the divisors of n.

Original entry on oeis.org

1, 8, 15, 44, 35, 129, 63, 208, 162, 305, 143, 712, 195, 553, 550, 912, 323, 1431, 399, 1665, 994, 1265, 575, 3356, 950, 1729, 1566, 3017, 899, 4901, 1023, 3840, 2266, 2873, 2254, 7845, 1443, 3553, 3094, 7744, 1763, 8862, 1935, 6897, 5901, 5129, 2303, 14672, 3234, 8475, 5134, 9425, 2915, 13986
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 05 2021

Keywords

Comments

If p is prime, a(p^k) = (p^(2*k+2)-(2+k)*p^(k+1)+(k+1)*p^k)/(p - 1)^2.
If p < q are primes, a(p*q) = q*(p^2*q+2*p^2+2*p*q+4*p+q).

Examples

			The divisors of 6 are 1,2,3,6, so a(6) = 6*(1+2+3+6)+3*(2+3+6)+2*(3+6)+1*6 = 129.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local D, S,i;
      D:= sort(convert(numtheory:-divisors(n),list),`>`);
      S:= ListTools:-PartialSums(D);
      add(D[i]*S[-i],i=1..nops(D))
    end proc:
    map(f, [$1..100]);
  • Mathematica
    Array[Sum[#1[[k]]*Sum[#1[[j]], {j, #2 - k + 1, #2}], {k, #2}] & @@ {Divisors[#], DivisorSigma[0, #]} &, 54] (* Michael De Vlieger, Feb 05 2021 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(k=1, #d, d[k]*sum(i=#d-k+1, #d, d[i])); \\ Michel Marcus, Feb 05 2021
Showing 1-2 of 2 results.