cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341093 Triangular array read by rows. T(n,k) is the number of partial functions on [n] with index k, n=0 implies k=1, otherwise n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 7, 2, 37, 21, 6, 261, 232, 108, 24, 2301, 2935, 1760, 660, 120, 24343, 42396, 30630, 14880, 4680, 720, 300455, 692055, 586572, 335790, 139440, 37800, 5040, 4238153, 12631200, 12387592, 8008896, 3959760, 1438080, 342720, 40320
Offset: 0

Views

Author

Geoffrey Critzer, Feb 13 2022

Keywords

Comments

For every partial function f, there are smallest positive integers k,m such that f^k = f^(k+m). The integer k is the index of f.

Examples

			Array begins
      1;
      2;
      7,     2;
     37,    21,     6;
    261,   232,   108,    24;
   2301,  2935,  1760,   660,  120;
  24343, 42396, 30630, 14880, 4680, 720;
  ...
		

Crossrefs

Cf. A072597 (column k=1), A000169(n+1) (row sums).

Programs

  • Mathematica
    nn = 8; np = Exp[NestList[x Exp[#] &, x, nn]]; fp = Exp[Log[1/(1 - NestList[x Exp[#] &, x Exp[x], nn])]];Map[Select[#, # > 0 &] &,Prepend[Table[Range[0, nn]! CoefficientList[Series[(fp[[k + 1]] - fp[[k]])*(np[[k + 1]]) + (fp[[k + 1]])*(np[[k + 1]] - np[[k]]) - (fp[[k + 1]] - fp[[k]]) (np[[k + 1]] - np[[k]]), {x, 0, nn}], x], {k, 1, nn - 1}], Range[0, nn]! CoefficientList[Series[1/(1 - x Exp[x])*Exp[x], {x, 0, nn}], x]] // Transpose] // Grid