A341109 a(n) = denominator(p(n, x)) / (n!*denominator(bernoulli(n, x))), where p(n, x) = Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n) / Product_{j=1..n} (j - x) and E2(n, k) are the second-order Eulerian numbers A201637.
1, 1, 2, 4, 8, 16, 96, 192, 1152, 768, 1536, 3072, 18432, 36864, 221184, 147456, 884736, 1769472, 10616832, 21233664, 637009920, 424673280, 2548039680, 5096079360, 152882380800, 61152952320, 366917713920, 81537269760, 163074539520, 326149079040, 1956894474240
Offset: 0
Keywords
Links
- András Bazsó and István Mező, On the coefficients of power sums of arithmetic progressions, J. Number Th., 153 (2015), 117-123.
- J.-L. Chabert and P.-J. Cahen, Old problems and new questions around integer-valued polynomials and factorial sequences In: J. W. Brewer, S. Glaz, W. J. Heinzer, B. M. Olberding (eds), Multiplicative Ideal Theory in Commutative Algebra. Springer, Boston, MA., 2006.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, arXiv:1705.03857 [math.NT] 2017, Amer. Math. Monthly.
Crossrefs
Programs
-
Maple
Epoly := proc(n, x) add(combinat:-eulerian2(n, k)*binomial(x+k, 2*n), k = 0..n) / mul(j-x, j = 1..n): simplify(expand(%)) end: seq(denom(Epoly(n, x)) / (n!*denom(bernoulli(n, x))), n = 0..30);
-
Mathematica
A053657[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k,0,n}],{p, Prime[Range[n]]}]; A144845[n_] := Denominator[Together[BernoulliB[n, x]]]; A163176[n_] := A053657[n] / n!; Table[(n + 1) A163176[n + 1] / A144845[n], {n, 0, 30}]
-
Sage
def A341109(n): # uses[A341108, A318256] return A341108(n)//A318256(n) print([A341109(n) for n in (0..30)])
Formula
prime(n) divides a(k) for k >= A036689(n).
2^(n-1) divides exactly a(n) for n >= 2.
Comments