A341107 a(n) = A341108(n)/A195441(n).
1, 1, 2, 4, 8, 8, 96, 192, 1152, 384, 1536, 1536, 18432, 18432, 73728, 147456, 884736, 884736, 10616832, 10616832, 212336640, 212336640, 2548039680, 849346560, 152882380800, 30576476160, 366917713920, 40768634880, 163074539520, 163074539520, 1956894474240
Offset: 0
Keywords
Programs
-
Sage
def A341107(n): def L(n, p, r): s, q = 0, p - r while q <= n: s += n // q q *= p return s if n < 2: return 1 p = prod(p^(L(n, p, 1) - L(n+1, p, 0)) for p in primes(n+1)) q = prod(p for p in prime_divisors(n + 1)) r = prod(p for p in (2..(n + 2)//(2 + n % 2)) if is_prime(p) and sum((n+1).digits(base = p)) >= p) return ((n + 1) * p) // (q * r) print([A341107(n) for n in (0..30)])