cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341200 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} j^k * (n-j)! * binomial(n,j)^2.

Original entry on oeis.org

1, 0, 2, 0, 1, 7, 0, 1, 6, 34, 0, 1, 8, 39, 209, 0, 1, 12, 63, 292, 1546, 0, 1, 20, 117, 544, 2505, 13327, 0, 1, 36, 243, 1168, 5225, 24306, 130922, 0, 1, 68, 549, 2800, 12525, 55656, 263431, 1441729, 0, 1, 132, 1323, 7312, 33425, 145836, 653023, 3154824, 17572114
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2021

Keywords

Examples

			Square array begins:
     1,    0,    0,     0,     0,     0, ...
     2,    1,    1,     1,     1,     1, ...
     7,    6,    8,    12,    20,    36, ...
    34,   39,   63,   117,   243,   549, ...
   209,  292,  544,  1168,  2800,  7312, ...
  1546, 2505, 5225, 12525, 33425, 97125, ...
		

Crossrefs

Columns k=0..4 gives A002720, A103194, A105219, A105218, A341196.
Main diagonal gives A341197.
Cf. A289192.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, j^k] * (n - j)! * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 06 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, j^k*(n-j)!*binomial(n, j)^2);

Formula

About e.g.f. of column k, see A105218 or A105219 comment.