cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341232 Numerator of the expected fraction of guests without a napkin in Conway's napkin problem with n guests.

Original entry on oeis.org

0, 0, 1, 11, 39, 473, 19897, 63683, 5731597, 22926439, 280212089, 20175270749, 224810160067, 6294684482461, 1321883741325001, 1208579420640469, 68486167169628137, 17258514126746312369, 178860964586279976467, 6053755724458706915971, 3305350625554453976644453
Offset: 1

Views

Author

Pontus von Brömssen, Feb 07 2021

Keywords

Examples

			0, 0, 1/12, 11/96, 39/320, 473/3840, 19897/161280, 63683/516096, 5731597/46448640
		

References

  • Peter Winkler, Mathematical Puzzles: A Connoisseur's Collection, A K Peters, 2004, p. 122.

Crossrefs

Cf. A248788, A341233 (denominators).

Programs

  • Python
    from sympy import numer, S, factorial
    def A341232(n):
      return numer(sum((1-S(2)**(2-k))/factorial(k) for k in range(2,n+1)))
    
  • Python
    from math import factorial
    from fractions import Fraction
    def a(n):
      s = sum(Fraction(2**k-4, 2**k*factorial(k)) for k in range(2, n+1))
      return s.numerator
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Feb 07 2021

Formula

a(n)/A341233(n) = Sum_{k=2..n} (1-2^(2-k))/k!.
Lim_{n->oo} a(n)/A341233(n) = (2-sqrt(e))^2 (A248788).