cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341234 Primes p such that (p^256 + 1)/2 is prime.

Original entry on oeis.org

331, 1783, 2591, 2791, 7127, 8443, 9007, 9859, 10133, 10883, 10889, 11621, 12101, 13183, 15391, 17737, 19309, 19571, 21863, 24043, 24203, 31159, 32717, 33377, 34267, 35023, 35531, 38177, 39929, 42397, 43499, 46867, 49499, 49943, 50087, 51137, 53101, 53377
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 07 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, A341229, A341230, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^8=256, respectively.

Examples

			(3^256 + 1)/2 = 6950422618...4449717761 (a 122-digit number) = 12289 * 8972801 * 891206124520373602817 * (a 90-digit prime), so 3 is not a term.
(331^256 + 1)/2 = 5955749334...7416010241 (a 645-digit number) is prime, so 331 is a term. Since 331 is the smallest prime p such that (p^256 + 1)/2 is prime, it is a(1) and is also A341211(8).
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), A341229 (k=6), A341230 (k=7), (this sequence) (k=8).
Cf. A341211 (Smallest prime p such that (p^(2^n) + 1)/2 is prime).

Programs

  • Mathematica
    Select[Range[20000], PrimeQ[#] && PrimeQ[(#^256 + 1)/2] &] (* Amiram Eldar, Feb 07 2021 *)