A341234 Primes p such that (p^256 + 1)/2 is prime.
331, 1783, 2591, 2791, 7127, 8443, 9007, 9859, 10133, 10883, 10889, 11621, 12101, 13183, 15391, 17737, 19309, 19571, 21863, 24043, 24203, 31159, 32717, 33377, 34267, 35023, 35531, 38177, 39929, 42397, 43499, 46867, 49499, 49943, 50087, 51137, 53101, 53377
Offset: 1
Keywords
Examples
(3^256 + 1)/2 = 6950422618...4449717761 (a 122-digit number) = 12289 * 8972801 * 891206124520373602817 * (a 90-digit prime), so 3 is not a term. (331^256 + 1)/2 = 5955749334...7416010241 (a 645-digit number) is prime, so 331 is a term. Since 331 is the smallest prime p such that (p^256 + 1)/2 is prime, it is a(1) and is also A341211(8).
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
Select[Range[20000], PrimeQ[#] && PrimeQ[(#^256 + 1)/2] &] (* Amiram Eldar, Feb 07 2021 *)
Comments