A341264
Primes p such that (p^512 + 1)/2 is prime.
Original entry on oeis.org
3631, 5113, 10651, 12391, 13999, 22093, 34687, 38713, 38959, 39199, 39679, 44879, 51229, 57389, 58757, 59651, 60331, 61543, 63389, 64483, 72931, 77023, 80369, 91639, 100787, 115679, 119551, 120713, 121727, 122299, 132109, 135599, 140221, 143387, 143873, 145753
Offset: 1
(3^512 + 1)/2 = 9661674916...6218270721 (a 244-digit number) = 134382593 * 22320686081 * 12079910333441 * 100512627347897906177 * 2652879528...2021744641 (a 193-digit composite number), so 3 is not a term.
(3631^512 + 1)/2 = 2706508826...0763924481 (an 1823-digit number) is prime, so 3631 is a term. Since 3631 is the smallest prime p such that (p^512 + 1)/2 is prime, it is a(1) and is also A341211(9).
Cf.
A341211 (Smallest prime p such that (p^(2^n) + 1)/2 is prime).
A341272
Primes p such that (p^1024 + 1)/2 is prime.
Original entry on oeis.org
827, 10861, 19501, 22751, 23339, 23663, 26347, 29581, 50077, 62131, 63331, 70657, 72221, 73523, 78301, 85447, 109013, 122363, 127363, 149213, 155461, 170551, 173549, 183877, 188579, 206627, 218149, 220147, 222029, 226099, 227231, 232051, 247601, 248317, 248543
Offset: 1
(3^1024 + 1)/2 = 1866959243...6855178241 (a 489-digit number) = 59393 * 448524289 * 847036417 * 8273923970...2296603649 (a 466-digit composite number), so 3 is not a term.
(827^1024 + 1)/2 = 1677304013...0116613121 (a 2988-digit number) is prime, so 827 is a term. Since 827 is the smallest prime p such that (p^1024 + 1)/2 is prime, it is a(1) and is also A341211(10).
Primes p such that (p^(2^k) + 1)/2 is prime:
A005383 (k=0),
A048161 (k=1),
A176116 (k=2),
A340480 (k=3),
A341210 (k=4),
A341224 (k=5),
A341229 (k=6),
A341230 (k=7),
A341234 (k=8),
A341264 (k=9), (this sequence) (k=10).
Cf.
A341211 (Smallest prime p such that (p^(2^n) + 1)/2 is prime).
Showing 1-2 of 2 results.
Comments