A341266 a(n) is the n-th term of the n-fold self-convolution of the twice left-shifted tribonacci sequence (A000073).
1, 1, 5, 25, 125, 646, 3395, 18054, 96885, 523600, 2845700, 15537457, 85160387, 468279280, 2582140370, 14272523740, 79056303957, 438711518556, 2438587839980, 13574970187300, 75668677723100, 422294150816010, 2359326605275755, 13194525668986350, 73857744668632275
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1323
Programs
-
Maple
a:= n-> coeff(series((1/(1-x-x^2-x^3))^n, x, n+1), x, n): seq(a(n), n=0..25); # second Maple program: g:= proc(n) g(n):= `if`(n<2, (n+1)*(2-n)/2, add(g(n-j), j=1..3)) end: b:= proc(n, k) option remember; `if`(k<2, g(n), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))) end: a:= n-> b(n$2): seq(a(n), n=0..25);
Formula
a(n) = [x^n] (1/(1-x-x^2-x^3))^n.
Comments