A341272 Primes p such that (p^1024 + 1)/2 is prime.
827, 10861, 19501, 22751, 23339, 23663, 26347, 29581, 50077, 62131, 63331, 70657, 72221, 73523, 78301, 85447, 109013, 122363, 127363, 149213, 155461, 170551, 173549, 183877, 188579, 206627, 218149, 220147, 222029, 226099, 227231, 232051, 247601, 248317, 248543
Offset: 1
Keywords
Examples
(3^1024 + 1)/2 = 1866959243...6855178241 (a 489-digit number) = 59393 * 448524289 * 847036417 * 8273923970...2296603649 (a 466-digit composite number), so 3 is not a term. (827^1024 + 1)/2 = 1677304013...0116613121 (a 2988-digit number) is prime, so 827 is a term. Since 827 is the smallest prime p such that (p^1024 + 1)/2 is prime, it is a(1) and is also A341211(10).
Crossrefs
Extensions
a(17)-a(35) from Jinyuan Wang, Feb 09 2021
Comments