A341276 a(n) = 1 + 3*n*(n+1) - Sum_{k=1..n} d(k), where d(k) is the number of divisors of k.
1, 6, 16, 32, 53, 81, 113, 153, 197, 248, 304, 368, 434, 510, 590, 676, 767, 867, 969, 1081, 1195, 1317, 1445, 1581, 1717, 1864, 2016, 2174, 2336, 2508, 2680, 2864, 3050, 3244, 3444, 3650, 3857, 4077, 4301, 4531, 4763, 5007, 5251, 5507, 5765
Offset: 0
Keywords
Examples
The curves with equations x=1, y=1 and x*y=1 are delimiting a(1)=6 regions in the (+; +) quadrant of the plane. With the addition of the curves with equations x=2, y=2 and x*y=2, the number of delimited regions reaches a(2)=16.
Programs
-
Mathematica
Table[1+3n(n+1)-Sum[DivisorSigma[0,k],{k,n}],{n,0,44}] (* Stefano Spezia, Feb 08 2021 *)
-
PARI
a(n)=1+3*n*(n+1)-sum(k=1,n,n\k)
-
Python
from sympy import integer_nthroot def A341276(n): return 1+3*n*(n+1)-2*sum(n//k for k in range(1,integer_nthroot(n,2)[0]+1))+integer_nthroot(n,2)[0]**2 # Chai Wah Wu, Mar 31 2021
Comments