A341288 Square array T(n, k), read by antidiagonals, n, k >= 0; T(n, k) = XOR_{u in B(n), v in B(k)} 2^(u XOR v) where XOR denotes the bitwise XOR operator and B(n) gives the exponents in expression for n as a sum of powers of 2.
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 1, 3, 0, 0, 4, 3, 3, 4, 0, 0, 5, 8, 0, 8, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 9, 15, 1, 15, 9, 7, 0, 0, 8, 11, 15, 5, 5, 15, 11, 8, 0, 0, 9, 4, 12, 9, 0, 9, 12, 4, 9, 0, 0, 10, 6, 12, 13, 15, 15, 13, 12, 6, 10, 0
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+--------------------------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2| 0 2 1 3 8 10 9 11 4 6 5 7 12 14 13 15 -> A057300 3| 0 3 3 0 12 15 15 12 12 15 15 12 0 3 3 0 4| 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 -> A126006 5| 0 5 10 15 5 0 15 10 10 15 0 5 15 10 5 0 6| 0 6 9 15 9 15 0 6 6 0 15 9 15 9 6 0 7| 0 7 11 12 13 10 6 1 14 9 5 2 3 4 8 15 8| 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 9| 0 9 6 15 6 15 0 9 9 0 15 6 15 6 9 0 10| 0 10 5 15 10 0 15 5 5 15 0 10 15 5 10 0 11| 0 11 7 12 14 5 9 2 13 6 10 1 3 8 4 15 12| 0 12 12 0 3 15 15 3 3 15 15 3 0 12 12 0 13| 0 13 14 3 7 10 9 4 11 6 5 8 12 1 2 15 14| 0 14 13 3 11 5 6 8 7 9 10 4 12 2 1 15 15| 0 15 15 0 15 0 0 15 15 0 0 15 0 15 15 0 \ v A010060
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010 (rows 0..140)
- Rémy Sigrist, Colored representation of the table for n, k < 2^10
- Rémy Sigrist, Colored representation of the table over the first 128 odious numbers
- Rémy Sigrist, Colored representation of the table over the first 1024 evil numbers (white pixels correspond to 0's)
Programs
-
PARI
B(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n -= 2^(b[k] = valuation(n, 2))); b } T(n,k) = { my (nn=B(n), kk=B(k), v=0); for (i=1, #nn, for (j=1, #kk, v=bitxor(v, 2^bitxor(nn[i], kk[j])))); v }
Comments