cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341288 Square array T(n, k), read by antidiagonals, n, k >= 0; T(n, k) = XOR_{u in B(n), v in B(k)} 2^(u XOR v) where XOR denotes the bitwise XOR operator and B(n) gives the exponents in expression for n as a sum of powers of 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 1, 3, 0, 0, 4, 3, 3, 4, 0, 0, 5, 8, 0, 8, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 9, 15, 1, 15, 9, 7, 0, 0, 8, 11, 15, 5, 5, 15, 11, 8, 0, 0, 9, 4, 12, 9, 0, 9, 12, 4, 9, 0, 0, 10, 6, 12, 13, 15, 15, 13, 12, 6, 10, 0
Offset: 0

Views

Author

Rémy Sigrist, Feb 08 2021

Keywords

Comments

For any x >= 0, the function n -> T(n, 2^x) is a self-inverse permutation of the nonnegative integers.
The set of nonnegative integers equipped with T forms a commutative monoid; its invertible elements are the odious numbers (A000069).
Hence A000069 equipped with T forms a group.

Examples

			Array T(n, k) begins:
  n\k|  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ---+---------------------------------------------------------------
    0|  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    1|  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    2|  0   2   1   3   8  10   9  11   4   6   5   7  12  14  13  15 -> A057300
    3|  0   3   3   0  12  15  15  12  12  15  15  12   0   3   3   0
    4|  0   4   8  12   1   5   9  13   2   6  10  14   3   7  11  15 -> A126006
    5|  0   5  10  15   5   0  15  10  10  15   0   5  15  10   5   0
    6|  0   6   9  15   9  15   0   6   6   0  15   9  15   9   6   0
    7|  0   7  11  12  13  10   6   1  14   9   5   2   3   4   8  15
    8|  0   8   4  12   2  10   6  14   1   9   5  13   3  11   7  15
    9|  0   9   6  15   6  15   0   9   9   0  15   6  15   6   9   0
   10|  0  10   5  15  10   0  15   5   5  15   0  10  15   5  10   0
   11|  0  11   7  12  14   5   9   2  13   6  10   1   3   8   4  15
   12|  0  12  12   0   3  15  15   3   3  15  15   3   0  12  12   0
   13|  0  13  14   3   7  10   9   4  11   6   5   8  12   1   2  15
   14|  0  14  13   3  11   5   6   8   7   9  10   4  12   2   1  15
   15|  0  15  15   0  15   0   0  15  15   0   0  15   0  15  15   0
                                                                     \
                                                                      v
                                                                    A010060
		

Crossrefs

Programs

  • PARI
    B(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n -= 2^(b[k] = valuation(n, 2))); b }
    T(n,k) = { my (nn=B(n), kk=B(k), v=0); for (i=1, #nn, for (j=1, #kk, v=bitxor(v, 2^bitxor(nn[i], kk[j])))); v }

Formula

T(n, k) = T(k, n) (T is commutative).
T(m, T(n, k)) = T(T(m, n), k) (T is associative).
T(n, 0) = 0 (0 is an absorbing element for T).
T(n, 1) = n (1 is the neutral element for T).
T(n, 2) = A057300(n).
T(n, 4) = A126006(n).
T(n, n) = A010060(n).
A010060(T(n, k)) = A010060(n) * A010060(k).