A352269 Irregular triangle read by rows: T(n,k) is the number of parts in the partition of n into 2*k-1 consecutive parts, 1 <= k <= A351846(n). T(n,k) = 0 if no such partition exists.
1, 1, 1, 1, 1, 1, 3, 1, 0, 1, 0, 1, 3, 1, 0, 1, 0, 1, 3, 1, 0, 1, 0, 1, 3, 5, 1, 0, 0, 1, 0, 0, 1, 3, 0, 1, 0, 0, 1, 0, 5, 1, 3, 0, 1, 0, 0, 1, 0, 0, 1, 3, 0, 1, 0, 5, 1, 0, 0, 1, 3, 0, 1, 0, 0, 7, 1, 0, 0, 0, 1, 3, 5, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 1, 0, 0, 0, 1, 0, 5, 7, 1, 3, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0
Offset: 1
Examples
Triangle begins: ----------------------- n / k 1 2 3 4 ----------------------- 1 | 1; 2 | 1; 3 | 1; 4 | 1; 5 | 1; 6 | 1, 3; 7 | 1, 0; 8 | 1, 0; 9 | 1, 3; 10 | 1, 0; 11 | 1, 0; 12 | 1, 3; 13 | 1, 0; 14 | 1, 0; 15 | 1, 3, 5; 16 | 1, 0, 0; 17 | 1, 0, 0; 18 | 1, 3, 0; 19 | 1, 0, 0; 20 | 1, 0, 5; 21 | 1, 3, 0; 22 | 1, 0, 0; 23 | 1, 0, 0; 24 | 1, 3, 0; 25 | 1, 0, 5; 26 | 1, 0, 0; 27 | 1, 3, 0; 28 | 1, 0, 0, 7; ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10490 (rows 1..800 of triangle, flattened).
Crossrefs
Programs
-
Mathematica
A352269[rowmax_]:=Table[If[Divisible[n,2k-1],2k-1,0],{n,rowmax},{k,Floor[(Sqrt[8n+1]+1)/4]}];A352269[50] (* Paolo Xausa, Apr 09 2023 *)
Formula
T(n,k) = (2*k-1)*A351824(n,k). [Corrected by Paolo Xausa, Apr 09 2023]
T(n,k) = (2*k-1)*[(2*k-1)|n], where 1 <= k <= floor((sqrt(8*n+1)+1)/4) and [] is the Iverson bracket. - Paolo Xausa, Apr 09 2023
Comments