A341312 a(n) = a(n-1) + a(n-3) unless a(n-1) and a(n-3) are both even in which case a(n) = (a(n-1) + a(n-3))/2, with a(0) = a(1) = a(2) = 1.
1, 1, 1, 2, 3, 4, 3, 6, 5, 8, 7, 12, 10, 17, 29, 39, 56, 85, 124, 90, 175, 299, 389, 564, 863, 1252, 908, 1771, 3023, 3931, 5702, 8725, 12656, 9179, 17904, 15280, 24459, 42363, 57643, 82102, 124465, 182108, 132105, 256570, 219339, 351444, 304007, 523346, 437395, 741402, 632374
Offset: 0
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..5000
- Hugo Pfoertner, Comparison of linear fits to logarithm of A341312, A341313, A214551 (Reed Kelly), and A000930 (Narayana's cows).
- Hugo Pfoertner, Deviation of log(A341312) from linear fit in range 3...10000.
Programs
-
Maple
RK2:=proc(n) local t1; option remember; if n <= 2 then 1 else t1:=RK2(n-3)+RK2(n-1); if (RK2(n-3) mod 2) = 0 and (RK2(n-1) mod 2) = 0 then t1:=t1/2; fi; t1; fi; end; [seq(RK2(n),n=0..60)];
-
PARI
a341312(nterms)={my(a=vector(nterms));a[1]=a[2]=1;a[3]=2;for(n=4,nterms,a[n]=if(a[n-1]%2==0&&a[n-3]%2==0,(a[n-1]+a[n-3])/2,a[n-1]+a[n-3]));concat([1],a)}; a341312(60) \\ Hugo Pfoertner, Feb 17 2021
Comments