cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341706 Row 2 of semigroup multiplication table shown in A341317 and A341318.

Original entry on oeis.org

0, 2, 7, 8, 16, 17, 18, 29, 30, 31, 32, 46, 47, 48, 49, 50, 67, 68, 69, 70, 71, 72, 92, 93, 94, 95, 96, 97, 98, 121, 122, 123, 124, 125, 126, 127, 128, 154, 155, 156, 157, 158, 159, 160, 161, 162, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 232, 233, 234
Offset: 0

Views

Author

N. J. A. Sloane, Feb 17 2021

Keywords

Crossrefs

Programs

  • Maple
    t:= n-> n*(n-1)/2:
    f:= n-> ceil((sqrt(1+8*n)-1)/2):
    g:= n-> (x-> [x, n-t(x)][])(f(n)):
    a:= n-> (h-> t(h[1]*h[3])+h[2]*h[4])(map(g, [n, 2])):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 17 2021

Extensions

More terms from Alois P. Heinz, Feb 17 2021

A341318 Lower triangular table of products in the semigroup S = {(0,0), (i,j): i >= j >= 1} (see Comments for precise definition), read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 7, 0, 3, 8, 10, 0, 4, 16, 17, 37, 0, 5, 17, 19, 38, 40, 0, 6, 18, 21, 39, 42, 45, 0, 7, 29, 30, 67, 68, 69, 121, 0, 8, 30, 32, 68, 70, 72, 122, 124, 0, 9, 31, 34, 69, 72, 75, 123, 126, 129, 0, 10, 32, 36, 70, 74, 78, 124, 128, 132, 136, 0, 11, 46, 47, 106, 107, 108, 191, 192, 193, 194, 301
Offset: 0

Views

Author

N. J. A. Sloane, Feb 17 2021

Keywords

Comments

Consider the semigroup S consisting of the pairs (0,0) and {(i,j): i >= j >= 1}, with componentwise products. Label the elements 0 = (0,0), 1 = (1,1), 2 = (2,1), 3 = (2,2), 4 = (3,1), 5 = (3,2), 6 = (3,3), 7 = (4,1), ... The triangle gives T(n,k) = label of product of n-th and k-th elements, for n>=k>=0.
See A341317 for further information, including a Maple program.

Examples

			Triangle begins:
0, [0]
1, [0, 1]
2, [0, 2, 7]
3, [0, 3, 8, 10]
4, [0, 4, 16, 17, 37]
5, [0, 5, 17, 19, 38, 40]
6, [0, 6, 18, 21, 39, 42, 45]
7, [0, 7, 29, 30, 67, 68, 69, 121]
8, [0, 8, 30, 32, 68, 70, 72, 122, 124]
9, [0, 9, 31, 34, 69, 72, 75, 123, 126, 129]
10, [0, 10, 32, 36, 70, 74, 78, 124, 128, 132, 136]
...
		

Crossrefs

Main diagonal gives A341736.

Programs

  • Maple
    t:= n-> n*(n-1)/2:
    f:= n-> ceil((sqrt(1+8*n)-1)/2):
    g:= n-> (x-> [x, n-t(x)][])(f(n)):
    T:= (n, k)-> (h-> t(h[1]*h[3])+h[2]*h[4])(map(g, [n, k])):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 17 2021
  • Mathematica
    t[n_] := n*(n - 1)/2;
    f[n_] := Ceiling[(Sqrt[1 + 8*n] - 1)/2];
    g[n_] := Function[x, {x, n - t[x]}][f[n]];
    T[n_, k_] := (Function[h, t[h[[1]]*h[[3]]] + h[[2]]*h[[4]]])[Flatten @ Map[g, {n, k}]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)

A341736 a(n) is the label of the square of the n-th element in the semigroup S = {(0,0), (i,j): i >= j >= 1}.

Original entry on oeis.org

0, 1, 7, 10, 37, 40, 45, 121, 124, 129, 136, 301, 304, 309, 316, 325, 631, 634, 639, 646, 655, 666, 1177, 1180, 1185, 1192, 1201, 1212, 1225, 2017, 2020, 2025, 2032, 2041, 2052, 2065, 2080, 3241, 3244, 3249, 3256, 3265, 3276, 3289, 3304, 3321, 4951, 4954, 4959
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2021

Keywords

Comments

The product in S is computed componentwise.
For the labeling of the elements in S and further information see A341317.

Crossrefs

Main diagonal of A341317 and of A341318.

Programs

  • Maple
    t:= n-> n*(n-1)/2:
    f:= n-> ceil((sqrt(1+8*n)-1)/2):
    g:= n-> (x-> [x, n-t(x)])(f(n)):
    a:= n-> (h-> t(h[1]^2)+h[2]^2)(g(n)):
    seq(a(n), n=0..60);
  • Mathematica
    t[n_] := n*(n - 1)/2;
    f[n_] := Ceiling[(Sqrt[1 + 8*n] - 1)/2];
    g[n_] := Function[x, {x, n - t[x]}][f[n]];
    a[n_] := Function[h, t[h[[1]]^2] + h[[2]]^2][g[n]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)

Formula

a(n) = A341317(n,n) = A341318(n,n).
a(A000217(n)) = A037270(n) = A000217(A000290(n)).
Showing 1-3 of 3 results.