A341318 Lower triangular table of products in the semigroup S = {(0,0), (i,j): i >= j >= 1} (see Comments for precise definition), read by rows.
0, 0, 1, 0, 2, 7, 0, 3, 8, 10, 0, 4, 16, 17, 37, 0, 5, 17, 19, 38, 40, 0, 6, 18, 21, 39, 42, 45, 0, 7, 29, 30, 67, 68, 69, 121, 0, 8, 30, 32, 68, 70, 72, 122, 124, 0, 9, 31, 34, 69, 72, 75, 123, 126, 129, 0, 10, 32, 36, 70, 74, 78, 124, 128, 132, 136, 0, 11, 46, 47, 106, 107, 108, 191, 192, 193, 194, 301
Offset: 0
Examples
Triangle begins: 0, [0] 1, [0, 1] 2, [0, 2, 7] 3, [0, 3, 8, 10] 4, [0, 4, 16, 17, 37] 5, [0, 5, 17, 19, 38, 40] 6, [0, 6, 18, 21, 39, 42, 45] 7, [0, 7, 29, 30, 67, 68, 69, 121] 8, [0, 8, 30, 32, 68, 70, 72, 122, 124] 9, [0, 9, 31, 34, 69, 72, 75, 123, 126, 129] 10, [0, 10, 32, 36, 70, 74, 78, 124, 128, 132, 136] ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
t:= n-> n*(n-1)/2: f:= n-> ceil((sqrt(1+8*n)-1)/2): g:= n-> (x-> [x, n-t(x)][])(f(n)): T:= (n, k)-> (h-> t(h[1]*h[3])+h[2]*h[4])(map(g, [n, k])): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Feb 17 2021
-
Mathematica
t[n_] := n*(n - 1)/2; f[n_] := Ceiling[(Sqrt[1 + 8*n] - 1)/2]; g[n_] := Function[x, {x, n - t[x]}][f[n]]; T[n_, k_] := (Function[h, t[h[[1]]*h[[3]]] + h[[2]]*h[[4]]])[Flatten @ Map[g, {n, k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)
Comments