A341328 Decimal expansion of the smaller solution (i.e., the solution other than x = 5) to 5^x = x^5.
1, 7, 6, 4, 9, 2, 1, 9, 1, 4, 5, 2, 5, 7, 7, 5, 8, 8, 2, 7, 5, 8, 7, 2, 3, 5, 9, 0, 9, 1, 1, 4, 5, 9, 1, 0, 1, 3, 7, 0, 1, 0, 3, 2, 5, 9, 2, 9, 4, 6, 8, 3, 8, 0, 8, 9, 9, 5, 3, 7, 4, 6, 8, 7, 8, 2, 1, 1, 0, 7, 7, 2, 1, 0, 0, 3, 3, 3, 9, 5, 4, 8, 8, 1, 4, 0, 1, 2, 4, 5, 2, 4
Offset: 1
Examples
If x = 1.7649219145257758827587235909114591014..., then log(x)/x = log(5)/5.
Links
- M. Vassilev-Missana, Some results on infinite power towers, Notes on Number Theory and Discrete Mathematics, Vol. 16 (2010) No. 3, 18-24.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[-5*ProductLog[-Log[5]/5]/Log[5], 10, 105] RealDigits[x/.FindRoot[5^x==x^5,{x,1.7},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Jan 22 2023 *)
-
PARI
default(realprecision, 92); solve(x=1, 2, 5^x-x^5)
Formula
Equals -(5/log(5))*W(-log(5)/5), where W is the principal branch of the Lambert W function.
Comments