cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341351 a(n) = A048673(A181815(n)).

Original entry on oeis.org

1, 2, 5, 3, 14, 8, 41, 23, 4, 122, 13, 68, 11, 365, 38, 203, 32, 1094, 113, 18, 608, 6, 63, 95, 3281, 338, 53, 1823, 17, 188, 284, 9842, 1013, 158, 5468, 50, 563, 25, 851, 29525, 88, 3038, 28, 313, 473, 16403, 149, 1688, 74, 2552, 88574, 263, 9113, 7, 83, 938, 1418, 49208, 446, 5063, 221, 7655, 265721, 788, 27338, 20
Offset: 1

Views

Author

Keywords

Comments

Maxima are in A007051 and appear at n in A025488, which are the indices of 2^k in A025487. 2^k is idempotent via A181815 but transformed by A003961 to 3^n, which are rendered by A048673 to (3^n + 1)/2.
Local minima are in A111333 and appear at n in A098719, which are the indices of P(k) = A002110(k) in A025487. P(k) is transformed by A181815 to p_k = A000040(k), which become p_(k+1) under A003961. Therefore these become (p_(k+1)+1)/2 via A048673.

Crossrefs

Cf. A341352 (inverse).
Cf. A007051 (record values).

Programs

  • Mathematica
    a025487[n_] := {{1}}~Join~Block[{lim = Product[Prime@ i, {i, n}], ww = NestList[Append[#, 1] &, {1}, n - 1]}, Map[Block[{w = #, k = 1}, Sort@ Prepend[If[Length@ # == 0, #, #[[1]]], Product[Prime@ i, {i, Length@ w}]] &@ Reap[Do[If[# < lim, Sow[#]; k = 1, If[k >= Length@ w, Break[], k++]] &@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, #]] &@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1]]], {i, Infinity}]][[-1]] ] &, ww]]; Map[(1 + If[# == 1, 1, Apply[Times, NextPrime[#1]^#2 & @@@ FactorInteger[#]]])/2 &@ Apply[Times, Prime@ Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} &@ If[# == 1, {0}, Function[f, ReplacePart[ConstantArray[0, PrimePi@ f[[-1, 1]] ], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #]] &, Union@ Flatten@ a025487@ 5] (* Michael De Vlieger, Feb 11 2021 *)
  • PARI
    A341351(n) = A048673(A181815(n));

Formula

a(n) = A048673(A181815(n)).
For all n >= 1, A181812(a(n)) = A025487(n).