cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A341359 Square array T(m,n) read by antidiagonals, satisfying shifted Catalan recurrences: T(m,0) = 1 and T(m,n) = Sum_{k=0..n-1} T(m,k) * T(m,(n-1-k+m) mod n) for all n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 5, 14, 1, 1, 2, 6, 15, 42, 1, 1, 2, 5, 26, 51, 132, 1, 1, 2, 5, 30, 142, 188, 429, 1, 1, 2, 6, 14, 305, 882, 731, 1430, 1, 1, 2, 5, 17, 210, 3955, 5910, 2950, 4862, 1, 1, 2, 5, 22, 50, 5894, 57855, 41610, 12235, 16796, 1, 1, 2, 6, 30, 65, 2550, 209146, 908880, 303390, 51822, 58786
Offset: 0

Views

Author

Max Alekseyev, Feb 09 2021

Keywords

Comments

Each column is periodic, and the period of column n divides A003418(n).

Examples

			Rows of the array:
m=0: 1, 1, 2, 5, 14,  42,  132,    429,     1430, ...
m=1: 1, 1, 2, 5, 15,  51,  188,    731,     2950, ...
m=2: 1, 1, 2, 6, 26, 142,  882,   5910,    41610, ...
m=3: 1, 1, 2, 5, 30, 305, 3955,  57855,   908880, ...
m=4: 1, 1, 2, 5, 14, 210, 5894, 209146,  8331582, ...
m=5: 1, 1, 2, 6, 17,  50, 2550, 255050, 32007550, ...
...
		

Crossrefs

Rows: A000108 (m=0), A181768 (m=1).
Columns: A000012 (n=0 and n=1), A007395 (n=2).

Programs

  • Mathematica
    T[m_, 0] := 1; T[m_, n_] := T[m, n] = Sum[T[m, k] * T[m, Mod[n - 1 - k + m, n]], {k, 0, n - 1}]; Table[T[m - n, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Amiram Eldar, Feb 09 2021 *)

Formula

G.f. for row m: p_m(x) + x^(m-1)/2 * ( 1 + sqrt((1 -(4*T(m,m)+1)*x)/(1-x)) ), where p_m(x) = Sum_{n=0..m-1} T(m,n) * x^n.
Showing 1-1 of 1 results.