A341448 Heinz numbers of integer partitions of type OO.
6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1
Keywords
Examples
The sequence of partitions together with their Heinz numbers begins: 6: (2,1) 74: (12,1) 141: (15,2) 14: (4,1) 77: (5,4) 142: (20,1) 15: (3,2) 86: (14,1) 143: (6,5) 24: (2,1,1,1) 93: (11,2) 145: (10,3) 26: (6,1) 95: (8,3) 150: (3,3,2,1) 33: (5,2) 96: (2,1,1,1,1,1) 152: (8,1,1,1) 35: (4,3) 104: (6,1,1,1) 158: (22,1) 38: (8,1) 106: (16,1) 161: (9,4) 51: (7,2) 119: (7,4) 177: (17,2) 54: (2,2,2,1) 122: (18,1) 178: (24,1) 56: (4,1,1,1) 123: (13,2) 185: (12,3) 58: (10,1) 126: (4,2,2,1) 201: (19,2) 60: (3,2,1,1) 132: (5,2,1,1) 202: (26,1) 65: (6,3) 135: (3,2,2,2) 204: (7,2,1,1) 69: (9,2) 140: (4,3,1,1) 209: (8,5)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
Comments