cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341477 Coefficients related to the asymptotics of generalized Delannoy numbers.

Original entry on oeis.org

0, 2, 10, 70, 680, 8346, 125504, 2218350, 45335680, 1047314578, 27079557632, 772687787510, 24172386314240, 821114930966890, 30146801401143296, 1187943632192716894, 50068690149298438144, 2245175953053786221730, 106828553482726336102400, 5371204894269759411503910
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 13 2021

Keywords

Examples

			Lim_{n->infinity} A001850(n)^(1/n) = (    3 +    2 * sqrt(1^2 + 1)) / 1^1.
Lim_{n->infinity} A026000(n)^(1/n) = (   22 +   10 * sqrt(2^2 + 1)) / 2^2.
Lim_{n->infinity} A026001(n)^(1/n) = (  223 +   70 * sqrt(3^2 + 1)) / 3^3.
Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 +  680 * sqrt(4^2 + 1)) / 4^4.
Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
		

Crossrefs

Formula

Lim_{n->infinity} (binomial(k*n, n) * hypergeom([(1-k)*n, -n], [-k*n], -1))^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k-1)^(k-1), for k>1.
Lim_{n->infinity} hypergeom([(1-k)*n, -n], [-k*n], -1)^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / k^k.
For k > 1, A341476(k)^2 - ((k-1)^2 + 1) * A341477(k)^2 = (-1)^k * (k-1)^(2*k-2).
Lim_{k->infinity} (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k * (k-1)^(k-1)) = 2*exp(1).
a(n) ~ n^(n-1).