A341495 Number of partitions of n into an odd number of parts such that the set of even parts has only one element.
0, 0, 1, 0, 2, 1, 5, 2, 9, 5, 17, 9, 30, 16, 49, 26, 78, 43, 122, 67, 184, 101, 272, 151, 397, 222, 567, 320, 802, 454, 1121, 637, 1545, 884, 2112, 1214, 2863, 1651, 3842, 2227, 5123, 2979, 6782, 3957, 8913, 5218, 11648, 6840, 15136, 8914, 19555, 11552, 25143
Offset: 0
Keywords
Examples
The a(2) = 1 partition is: 2. The a(4) = 2 partitions are: 4, 1+1+2. The a(5) = 1 partition is: 1+2+2. The a(6) = 5 partitions are: 6, 1+1+4, 1+2+3, 2+2+2, 1+1+1+1+2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Cristina Ballantine and Mircea Merca, Combinatorial proofs of two theorems related to the number of even parts in all partitions of n into distinct parts, Ramanujan J., 54:1 (2021), 107-112.
Programs
-
Mathematica
P[n_, c_] := c*Sum[x^(2k)/(1 - c*x^(2k)) + O[x]^n, {k, 1, n/2}]/ Product[1 - c*x^(2k - 1) + O[x]^n, {k, 1, n/2}]; CoefficientList[(P[100, 1] - P[100, -1])/2, x] (* Jean-François Alcover, May 24 2021, from PARI code *)
-
PARI
P(n,c)={c*sum(k=1, n\2, x^(2*k)/(1-c*x^(2*k)) + O(x*x^n))/prod(k=1, n\2, 1-c*x^(2*k-1) + O(x*x^n))} seq(n)={Vec(P(n,1) - P(n,-1), -(n+1))/2}